Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958007

RESUMEN

Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7bp substitution mutation results in massive perturbation of the Tinman regulatory network orchestrating dorsal musculature, manifested as physiological and anatomical changes in the cardiac system, impaired specific activity features and significantly compromised viability of adult flies. Thus, a single motif can have a critical impact on embryogenesis and, in the case of DPE, functional heart formation.

2.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854037

RESUMEN

Next-Generation Sequencing (NGS) catalyzed breakthroughs across various scientific domains. Illumina's sequencing by synthesis method has long been essential for NGS but emerging technologies like Element Biosciences' sequencing by avidity (AVITI) represent a novel approach. It has been reported that AVITI offers improved signal-to-noise ratios and cost reductions. However, the method relies on rolling circle amplification which can be impacted by polymer size, raising questions about its efficacy sequencing small RNAs (sRNA) molecules including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and others that are crucial regulators of gene expression and involved in various biological processes. In addition, capturing capped small RNAs (csRNA-seq) has emerged as a powerful method to map active or "nascent" RNA polymerase II transcription initiation in tissues and clinical samples. Here, we report a new protocol for seamlessly sequencing short DNA fragments on the AVITI and demonstrate that AVITI and Illumina sequencing technologies equivalently capture human, cattle (Bos taurus) and the bison (Bison bison) sRNA or csRNA sequencing libraries, augmenting the confidence in both approaches. Additionally, analysis of generated nascent transcription start sites (TSSs) data for cattle and bison revealed inaccuracies in their current genome annotations and highlighted the possibility and need to translate small RNA sequencing methodologies to livestock. Our accelerated and optimized protocol therefore bridges the advantages of AVITI sequencing and critical methods that rely on sequencing short DNA fragments.

3.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889788

RESUMEN

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Asunto(s)
Sulfuro de Hidrógeno , Poecilia , Animales , Sulfuro de Hidrógeno/metabolismo , Poecilia/genética , Poecilia/fisiología , Poecilia/metabolismo , Extremófilos/metabolismo , Extremófilos/fisiología , Extremófilos/genética , Transcripción Genética , México , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Branquias/metabolismo
4.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38407414

RESUMEN

MOTIVATION: Prediction and identification of core promoter elements and transcription factor binding sites is essential for understanding the mechanism of transcription initiation and deciphering the biological activity of a specific locus. Thus, there is a need for an up-to-date tool to detect and curate core promoter elements/motifs in any provided nucleotide sequences. RESULTS: Here, we introduce ElemeNT 2023-a new and enhanced version of the Elements Navigation Tool, which provides novel capabilities for assessing evolutionary conservation and for readily evaluating the quality of high-throughput transcription start site (TSS) datasets, leveraging preferential motif positioning. ElemeNT 2023 is accessible both as a fast web-based tool and via command line (no coding skills are required to run the tool). While this tool is focused on core promoter elements, it can also be used for searching any user-defined motif, including sequence-specific DNA binding sites. Furthermore, ElemeNT's CORE database, which contains predicted core promoter elements around annotated TSSs, is now expanded to cover 10 species, ranging from worms to human. In this applications note, we describe the new workflow and demonstrate a case study using ElemeNT 2023 for core promoter composition analysis of diverse species, revealing motif prevalence and highlighting evolutionary insights. We discuss how this tool facilitates the exploration of uncharted transcriptomic data, appraises TSS quality, and aids in designing synthetic promoters for gene expression optimization. Taken together, ElemeNT 2023 empowers researchers with comprehensive tools for meticulous analysis of sequence elements and gene expression strategies. AVAILABILITY AND IMPLEMENTATION: ElemeNT 2023 is freely available at https://www.juven-gershonlab.org/resources/element-v2023/. The source code and command line version of ElemeNT 2023 are available at https://github.com/OritAdato/ElemeNT. No coding skills are required to run the tool.


Asunto(s)
Programas Informáticos , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Sitio de Iniciación de la Transcripción
5.
NAR Cancer ; 5(4): zcad058, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38155930

RESUMEN

Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.

6.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808859

RESUMEN

Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating ("nascent") transcripts across diverse crops and other plants using capped small (cs)RNA-seq. We discovered that unstable transcripts are rare, unlike in vertebrates, and often originate from promoters. Additionally, many "distal" elements in plants initiate tissue-specific stable transcripts and are likely bone fide promoters of yet-unannotated genes or non-coding RNAs, cautioning against using genome annotations to infer "enhancers" or transcript stability. To investigate enhancer function, we integrated STARR-seq data. We found that annotated promoters, and other regions that initiate stable transcripts rather than unstable transcripts, function as stronger enhancers in plants. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements encompass diverse structures and mechanisms in eukaryotes.

7.
bioRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398300

RESUMEN

Transcription is initiated at the core promoter, which confers specific functions depending on the unique combination of core promoter elements. The downstream core promoter element (DPE) is found in many genes related to heart and mesodermal development. However, the function of these core promoter elements has thus far been studied primarily in isolated, in vitro or reporter gene settings. tinman (tin) encodes a key transcription factor that regulates the formation of the dorsal musculature and heart. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show that a substitution mutation of the functional tin DPE motif within the natural context of the core promoter results in a massive perturbation of Tinman's regulatory network orchestrating dorsal musculature and heart formation. Mutation of endogenous tin DPE reduced the expression of tin and distinct target genes, resulting in significantly reduced viability and an overall decrease in adult heart function. We demonstrate the feasibility and importance of characterizing DNA sequence elements in vivo in their natural context, and accentuate the critical impact a single DPE motif has during Drosophila embryogenesis and functional heart formation.

8.
Nucleic Acids Res ; 51(15): e80, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37403796

RESUMEN

Cis-regulatory elements (CREs) can be classified by the shapes of their transcription start site (TSS) profiles, which are indicative of distinct regulatory mechanisms. Massively parallel reporter assays (MPRAs) are increasingly being used to study CRE regulatory mechanisms, yet the degree to which MPRAs replicate individual endogenous TSS profiles has not been determined. Here, we present a new low-input MPRA protocol (TSS-MPRA) that enables measuring TSS profiles of episomal reporters as well as after lentiviral reporter chromatinization. To sensitively compare MPRA and endogenous TSS profiles, we developed a novel dissimilarity scoring algorithm (WIP score) that outperforms the frequently used earth mover's distance on experimental data. Using TSS-MPRA and WIP scoring on 500 unique reporter inserts, we found that short (153 bp) MPRA promoter inserts replicate the endogenous TSS patterns of ∼60% of promoters. Lentiviral reporter chromatinization did not improve fidelity of TSS-MPRA initiation patterns, and increasing insert size frequently led to activation of extraneous TSS in the MPRA that are not active in vivo. We discuss the implications of our findings, which highlight important caveats when using MPRAs to study transcription mechanisms. Finally, we illustrate how TSS-MPRA and WIP scoring can provide novel insights into the impact of transcription factor motif mutations and genetic variants on TSS patterns and transcription levels.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Sitio de Iniciación de la Transcripción , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Secuenciación de Nucleótidos de Alto Rendimiento
9.
Cell Rep Med ; 4(2): 100935, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36758547

RESUMEN

Transcription factor programs mediating the immune response to coronavirus disease 2019 (COVID-19) are not fully understood. Capturing active transcription initiation from cis-regulatory elements such as enhancers and promoters by capped small RNA sequencing (csRNA-seq), in contrast to capturing steady-state transcripts by conventional RNA-seq, allows unbiased identification of the underlying transcription factor activity and regulatory pathways. Here, we profile transcription initiation in critically ill COVID-19 patients, identifying transcription factor motifs that correlate with clinical lung injury and disease severity. Unbiased clustering reveals distinct subsets of cis-regulatory elements that delineate the cell type, pathway-specific, and combinatorial transcription factor activity. We find evidence of critical roles of regulatory networks, showing that STAT/BCL6 and E2F/MYB regulatory programs from myeloid cell populations are activated in patients with poor disease outcomes and associated with COVID-19 susceptibility genetic variants. More broadly, we demonstrate how capturing acute, disease-mediated changes in transcription initiation can provide insight into the underlying molecular mechanisms and stratify patient disease severity.


Asunto(s)
COVID-19 , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Regulación de la Expresión Génica , Leucocitos/metabolismo , Unidades de Cuidados Intensivos
10.
PLoS Biol ; 21(1): e3001950, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689475

RESUMEN

Protein aggregates are a common feature of diseased and aged cells. Membrane proteins comprise a quarter of the proteome, and yet, it is not well understood how aggregation of membrane proteins is regulated and what effects these aggregates can have on cellular health. We have determined in yeast that the derlin Dfm1 has a chaperone-like activity that influences misfolded membrane protein aggregation. We establish that this function of Dfm1 does not require recruitment of the ATPase Cdc48 and it is distinct from Dfm1's previously identified function in dislocating misfolded membrane proteins from the endoplasmic reticulum (ER) to the cytosol for degradation. Additionally, we assess the cellular impacts of misfolded membrane proteins in the absence of Dfm1 and determine that misfolded membrane proteins are toxic to cells in the absence of Dfm1 and cause disruptions to proteasomal and ubiquitin homeostasis.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
NAR Genom Bioinform ; 4(4): lqac075, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36267125

RESUMEN

Score-based motif enrichment analysis (MEA) is typically applied to regulatory DNA to infer transcription factors (TFs) that may modulate transcription and chromatin state in different conditions. Most MEA methods determine motif enrichment independent of motif position within a sequence, even when those sequences harbor anchor points that motifs and their bound TFs may functionally interact with in a distance-dependent fashion, such as other TF binding motifs, transcription start sites (TSS), sequencing assay cleavage sites, or other biologically meaningful features. We developed motif enrichment positional profiling (MEPP), a novel MEA method that outputs a positional enrichment profile of a given TF's binding motif relative to key anchor points (e.g. transcription start sites, or other motifs) within the analyzed sequences while accounting for lower-order nucleotide bias. Using transcription initiation and TF binding as test cases, we demonstrate MEPP's utility in determining the sequence positions where motif presence correlates with measures of biological activity, inferring positional dependencies of binding site function. We demonstrate how MEPP can be applied to interpretation and hypothesis generation from experiments that quantify transcription initiation, chromatin structure, or TF binding measurements. MEPP is available for download from https://github.com/npdeloss/mepp.

12.
Nat Commun ; 13(1): 5341, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097162

RESUMEN

The emergence of Zika virus (ZIKV) as a global health threat has highlighted the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV infects dendritic cells (DC), which have pivotal functions in activating innate and adaptive antiviral responses; however, the mechanisms by which DC function is subverted to establish ZIKV infection are unclear. Here we develop a genomics profiling method that enables discrete analysis of ZIKV-infected versus neighboring, uninfected primary human DCs to increase the sensitivity and specificity with which ZIKV-modulated pathways can be identified. The results show that ZIKV infection specifically increases the expression of genes enriched for lipid metabolism-related functions. ZIKV infection also increases the recruitment of sterol regulatory element-binding protein (SREBP) transcription factors to lipid gene promoters, while pharmacologic inhibition or genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus identify SREBP2-activated transcription as a mechanism for promoting ZIKV infection amenable to therapeutic targeting.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Células Dendríticas , Humanos , Lípidos , Transcripción Genética
13.
J Fungi (Basel) ; 8(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012847

RESUMEN

Coccidioides immitis and posadasii are closely related fungal species that cause coccidioidomycosis. These dimorphic organisms cause disease in immunocompetent as well as immunocompromised individuals and as much as 40% of the population is infected in the endemic area. Although most infections resolve spontaneously, the infection can be prolonged and, in some instances, fatal. Coccidioides has been studied for more than 100 years and many aspects of the organism and the disease it causes have been investigated. There are over 500 manuscripts concerning Coccidioides (excluding clinical articles) referenced in PubMed over the past 50 years, so there is a large body of evidence to review. We reviewed the most accurate and informative basic research studies of these fungi including some seminal older studies as well as an extensive review of current research. This is an attempt to gather the most important basic research studies about this fungus into one publication. To focus this review, we will discuss the mycology of the organism exclusively rather than the studies of the host response or clinical studies. We hope that this review will be a useful resource to those interested in Coccidioides and coccidioidomycosis.

14.
Front Neurosci ; 16: 858427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651629

RESUMEN

Substance abuse and addiction represent a significant public health problem that impacts multiple dimensions of society, including healthcare, the economy, and the workforce. In 2021, over 100,000 drug overdose deaths were reported in the US, with an alarming increase in fatalities related to opioids and psychostimulants. Understanding the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. To explore how repeated drug exposure alters gene regulatory networks in the brain, we combined capped small (cs)RNA-seq, which accurately captures nascent-like initiating transcripts from total RNA, with Hi-C and single nuclei (sn)ATAC-seq. We profiled initiating transcripts in two addiction-related brain regions, the prefrontal cortex (PFC) and the nucleus accumbens (NAc), from rats that were never exposed to drugs or were subjected to prolonged abstinence after oxycodone or cocaine intravenous self-administration (IVSA). Interrogating over 100,000 active transcription start regions (TSRs) revealed that most TSRs had hallmarks of bonafide enhancers and highlighted the KLF/SP1, RFX, and AP1 transcription factors families as central to establishing brain-specific gene regulatory programs. Analysis of rats with addiction-like behaviors versus controls identified addiction-associated repression of transcription at regulatory enhancers recognized by nuclear receptor subfamily 3 group C (NR3C) factors, including glucocorticoid receptors. Cell-type deconvolution analysis using snATAC-seq uncovered a potential role of glial cells in driving the gene regulatory programs associated with addiction-related phenotypes. These findings highlight the power of advanced transcriptomics methods to provide insight into how addiction perturbs gene regulatory programs in the brain.

15.
mSystems ; 7(1): e0140421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35076277

RESUMEN

New or emerging infectious diseases are commonly caused by pathogens that cannot be readily manipulated or studied under common laboratory conditions. These limitations hinder standard experimental approaches and our abilities to define the fundamental molecular mechanisms underlying pathogenesis. The advance of capped small RNA sequencing (csRNA-seq) now enables genome-wide mapping of actively initiated transcripts from genes and other regulatory transcribed start regions (TSRs) such as enhancers at a precise moment from total RNA. As RNA is nonpathogenic and can be readily isolated from inactivated infectious samples, csRNA-seq can detect acute changes in gene regulation within or in response to a pathogen with remarkable sensitivity under common laboratory conditions. Studying valley fever (coccidioidomycosis), an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health, we show how csRNA-seq can unravel transcriptional programs driving pathogenesis. Performing csRNA-seq on RNA isolated from different stages of the valley fever pathogen Coccidioides immitis revealed alternative promoter usage, connected cis-regulatory domains, and a WOPR family transcription factor, which are known regulators of virulence in other fungi, as being critical for pathogenic growth. We further demonstrate that a C. immitis WOPR homologue, CIMG_02671, activates transcription in a WOPR motif-dependent manner. Collectively, these findings provide novel insights into valley fever pathogenesis and provide a proof of principle for csRNA-seq as a powerful means to determine the genes, regulatory mechanisms, and transcription factors that control the pathogenesis of highly infectious agents. IMPORTANCE Infectious pathogens like airborne viruses or fungal spores are difficult to study; they require high-containment facilities, special equipment, and expertise. As such, establishing approaches such as genome editing or other means to identify the factors and mechanisms underlying caused diseases, and, thus, promising drug targets, is costly and time-intensive. These obstacles particularly hinder the analysis of new, emerging, or rare infectious diseases. We recently developed a method termed capped small RNA sequencing (csRNA-seq) that enables capturing acute changes in active gene expression from total RNA. Prior to csRNA-seq, such an analysis was possible only by using living cells or nuclei, in which pathogens are highly infectious. The process of RNA purification, however, inactivates pathogens and thus enables the analysis of gene expression during disease progression under standard laboratory conditions. As a proof of principle, here, we use csRNA-seq to unravel the gene regulatory programs and factors likely critical for the pathogenesis of valley fever, an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health.


Asunto(s)
Coccidioides , Coccidioidomicosis , Humanos , Coccidioides/genética , Coccidioidomicosis/diagnóstico , Virulencia , Regulación de la Expresión Génica , ARN , Factores de Transcripción/genética
16.
bioRxiv ; 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34462742

RESUMEN

The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID- 19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.

17.
NAR Genom Bioinform ; 3(3): lqab061, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34268494

RESUMEN

Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.

18.
Science ; 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083448

RESUMEN

DNA methylation is associated with transcriptional repression of eukaryotic genes and transposons, but the downstream mechanism of gene silencing is largely unknown. Here we describe two Arabidopsis methyl-CpG binding domain proteins, MBD5 and MBD6, that are recruited to chromatin by recognition of CG methylation, and redundantly repress a subset of genes and transposons without affecting DNA methylation levels. These methyl-readers recruit a J-domain protein, SILENZIO, that acts as a transcriptional repressor in loss-of-function and gain-of-function experiments. J-domain proteins often serve as co-chaperones with HSP70s. Indeed, we found that SILENZIO's conserved J-domain motif was required for its interaction with HSP70s and for its silencing function. These results uncover an unprecedented role of a molecular chaperone J-domain protein in gene silencing downstream of DNA methylation.

19.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33970190

RESUMEN

DNMT3A encodes an enzyme that carries out de novo DNA methylation, which is essential for the acquisition of cellular identity and specialized functions during cellular differentiation. DNMT3A is the most frequently mutated gene in age-related clonal hematopoiesis. As such, mature immune cells harboring DNMT3A mutations can be readily detected in elderly persons. Most DNMT3A mutations associated with clonal hematopoiesis are heterozygous and predicted to cause loss of function, indicating that haploinsufficiency is the predominant pathogenic mechanism. Yet, the impact of DNMT3A haploinsufficiency on the function of mature immune cells is poorly understood. Here, we demonstrate that DNMT3A haploinsufficiency impairs the gain of DNA methylation at decommissioned enhancers, while simultaneously and unexpectedly impairing DNA demethylation of newly activated enhancers in mature human myeloid cells. The DNA methylation defects alter the activity of affected enhancers, leading to abnormal gene expression and impaired immune response. These findings provide insights into the mechanism of immune dysfunction associated with clonal hematopoiesis and acquired DNMT3A mutations.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Haploinsuficiencia/genética , Sistema Inmunológico/inmunología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/inmunología , Metilación de ADN/inmunología , ADN Metiltransferasa 3A , Expresión Génica/genética , Expresión Génica/inmunología , Haploinsuficiencia/inmunología , Humanos , Mutación/genética , Mutación/inmunología , Secuencias Reguladoras de Ácidos Nucleicos/inmunología
20.
Mol Biol Cell ; 32(7): 521-537, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566711

RESUMEN

Before their delivery to and degradation by the 26S proteasome, misfolded transmembrane proteins of the endoplasmic reticulum (ER) and inner-nuclear membrane (INM) must be extracted from lipid bilayers. This extraction process, known as retrotranslocation, requires both quality-control E3 ubiquitin ligases and dislocation factors that diminish the energetic cost of dislodging the transmembrane segments of a protein. Recently, we showed that retrotranslocation of all ER transmembrane proteins requires the Dfm1 rhomboid pseudoprotease. However, we did not investigate whether Dfm1 also mediated retrotranslocation of transmembrane substrates in the INM, which is contiguous with the ER but functionally separated from it by nucleoporins. Here, we show that canonical retrotranslocation occurs during INM-associated degradation (INMAD) but proceeds independently of Dfm1. Despite this independence, ER-associated degradation (ERAD)-M and INMAD cooperate to mitigate proteotoxicity. We show a novel misfolded-transmembrane-protein toxicity that elicits genetic suppression, demonstrating the cell's ability to tolerate a toxic burden of misfolded transmembrane proteins without functional INMAD or ERAD-M. This strikingly contrasted the suppression of the dfm1Δ null, which leads to the resumption of ERAD-M through HRD-complex remodeling. Thus, we conclude that INM retrotranslocation proceeds through a novel, private channel that can be studied by virtue of its role in alleviating membrane-associated proteotoxicity.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Membrana Nuclear/metabolismo , Proteostasis/fisiología , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...