Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(16): 9226-9246, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36039747

RESUMEN

DDX5 and DDX17 are DEAD-box RNA helicase paralogs which regulate several aspects of gene expression, especially transcription and splicing, through incompletely understood mechanisms. A transcriptome analysis of DDX5/DDX17-depleted human cells confirmed the large impact of these RNA helicases on splicing and revealed a widespread deregulation of 3' end processing. In silico analyses and experiments in cultured cells showed the binding and functional contribution of the genome organizing factor CTCF to chromatin sites at or near a subset of DDX5/DDX17-dependent exons that are characterized by a high GC content and a high density of RNA Polymerase II. We propose the existence of an RNA helicase-dependent relationship between CTCF and the dynamics of transcription across DNA and/or RNA structured regions, that contributes to the processing of internal and terminal exons. Moreover, local DDX5/DDX17-dependent chromatin loops spatially connect RNA helicase-regulated exons with their cognate promoter, and we provide the first direct evidence that de novo gene looping modifies alternative splicing and polyadenylation. Overall our findings uncover the impact of DDX5/DDX17-dependent chromatin folding on pre-messenger RNA processing.


Asunto(s)
ARN Helicasas DEAD-box , ARN , Humanos , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Helicasas DEAD-box/metabolismo , Empalme Alternativo , Cromatina/genética
2.
Sci Rep ; 11(1): 21280, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711837

RESUMEN

Emerging viral diseases of plants are recognised as a growing threat to global food security. However, little is known about the evolutionary processes and ecological factors underlying the emergence and success of viruses that have caused past epidemics. With technological advances in the field of ancient genomics, it is now possible to sequence historical genomes to provide a better understanding of viral plant disease emergence and pathogen evolutionary history. In this context, herbarium specimens represent a valuable source of dated and preserved material. We report here the first historical genome of a crop pathogen DNA virus, a 90-year-old African cassava mosaic virus (ACMV), reconstructed from small RNA sequences bearing hallmarks of small interfering RNAs. Relative to tip-calibrated dating inferences using only modern data, those performed with the historical genome yielded both molecular evolution rate estimates that were significantly lower, and lineage divergence times that were significantly older. Crucially, divergence times estimated without the historical genome appeared in discordance with both historical disease reports and the existence of the historical genome itself. In conclusion, our study reports an updated time-frame for the history and evolution of ACMV and illustrates how the study of crop viral diseases could benefit from natural history collections.


Asunto(s)
Begomovirus/genética , Evolución Molecular , Manihot/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , ARN de Planta/genética , Teorema de Bayes , Begomovirus/clasificación , Genoma Viral , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA