Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35045343

RESUMEN

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Asunto(s)
Quistes del Sistema Nervioso Central/genética , Trastornos Congénitos de Glicosilación/genética , Hamartoma/genética , Discapacidad Intelectual/genética , Oligosacáridos/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Polimicrogiria/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Línea Celular Tumoral , Quistes del Sistema Nervioso Central/metabolismo , Quistes del Sistema Nervioso Central/patología , Vermis Cerebeloso/metabolismo , Vermis Cerebeloso/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Femenino , Feto , Glicosilación , Hamartoma/metabolismo , Hamartoma/patología , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Manosa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patología , Lengua/metabolismo , Lengua/patología , alfa-Manosidasa/deficiencia
2.
JIMD Rep ; 62(1): 22-29, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765394

RESUMEN

For the first time the glycosylation of a patient with a MPI-CDG during pregnancy is monitored. MPI-CDG, is characterised by a deficiency in mannose-6-phosphate isomerase (MPI) leading to a reduced pool of glycosylation precursors, impairing the biosynthesis of N-glycans leading to N-glycosylation defects. The abnormal N-glycosylation profile with an elevation of asialotransferrin and disialotransferrin, typical of CDG type I, is assessable by transferrin isoelectrofocusing. Oral D-mannose supplementation for MPI-CDG patients has been widely used and improves clinical manifestations. The glycosylation of a MPI-CDG patient during pregnancy without mannose supplementation was studied using carbohydrate deficient transferrin (CDT) assay, transferrin isoelectrofocusing (IEF) and mass spectrometry of total serum N-glycans. A general improvement of the glycosylation profile of the patient due to a better transfer of the glycan precursors as well as an increase of the triantennary glycans (and sialylation) was observed. In conclusion, in the absence of mannose supplementation, the previously observed glycosylation abnormality of the MPI-CDG patient was corrected. The molecular mechanism underlying this N-glycosylation rescue during MPI-CDG pregnancy further needs to be investigated.

3.
Am J Hum Genet ; 108(7): 1342-1349, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143952

RESUMEN

EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.


Asunto(s)
Proteínas de Unión al Calcio/genética , Trastornos Congénitos de Glicosilación/genética , Retículo Endoplásmico/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Proteínas de Unión al Calcio/deficiencia , Línea Celular , Niño , Preescolar , Trastornos Congénitos de Glicosilación/sangre , Discapacidades del Desarrollo/genética , Femenino , Glicoproteínas/sangre , Glicosilación , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Mutación , Linaje , Polisacáridos/sangre , Deficiencias en la Proteostasis/genética , alfa-Manosidasa/deficiencia
4.
Sci Rep ; 9(1): 6243, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000788

RESUMEN

Hepatitis E Virus (HEV) genome encodes three proteins including the ORF2 capsid protein. Recently, we demonstrated that HEV produces three different forms of ORF2: (i) the ORF2i form (infectious ORF2) which is the component of infectious particles, (ii) the secreted ORF2g (glycosylated ORF2) and ORF2c (cleaved ORF2) forms that are not associated with infectious particles, but are the major antigens in HEV-infected patient sera. The ORF2 protein sequence contains three highly conserved potential N-glycosylation sites (N1, N2 and N3). The status and biological relevance of ORF2 N-glycosylation in HEV lifecycle remain to be elucidated. Here, we generated and extensively characterized a series of ORF2 mutants in which the three N-glycosylation sites were mutated individually or in combination. We demonstrated that the ORF2g/c protein is N-glycosylated on N1 and N3 sites but not on the N2 site. We showed that N-glycosylation of ORF2 protein does not play any role in replication and assembly of infectious HEV particles. We found that glycosylated ORF2g/c forms are very stable proteins which are targeted by patient antibodies. We also demonstrated that the ORF2i protein is translocated into the nucleus of infected cells. Hence, our study led to new insights into the molecular mechanisms of ORF2 expression.


Asunto(s)
Virus de la Hepatitis E/patogenicidad , Proteínas Virales/química , Proteínas Virales/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Glicosilación , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Interacciones Huésped-Patógeno , Humanos , Mutación , Señales de Clasificación de Proteína , Estabilidad Proteica , Proteínas Virales/genética , Proteínas Virales/inmunología
5.
FASEB J ; 33(2): 2669-2679, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30307768

RESUMEN

Congenital disorders of glycosylation are severe inherited diseases in which aberrant protein glycosylation is a hallmark. Transmembrane protein 165 (TMEM165) is a novel Golgi transmembrane protein involved in type II congenital disorders of glycosylation. Although its biologic function is still a controversial issue, we have demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi Mn2+ homeostasis defect. The goal of this study was to delineate the cellular pathway by which extracellular Mn2+ rescues N-glycosylation in TMEM165 knockout (KO) cells. We first demonstrated that after extracellular exposure, Mn2+ uptake by HEK293 cells at the plasma membrane did not rely on endocytosis but was likely done by plasma membrane transporters. Second, we showed that the secretory pathway Ca2+-ATPase 1, also known to mediate the influx of cytosolic Mn2+ into the lumen of the Golgi apparatus, is not crucial for the Mn2+-induced rescue glycosylation of lysosomal-associated membrane protein 2 (LAMP2). In contrast, our results demonstrate the involvement of cyclopiazonic acid- and thapsigargin (Tg)-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+. Interestingly, overexpression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2b isoform in TMEM165 KO cells partially rescues the observed LAMP2 glycosylation defect. Overall, this study indicates that the rescue of Golgi N-glycosylation defects in TMEM165 KO cells by extracellular Mn2+ involves the activity of Tg and cyclopiazonic acid-sensitive pumps, probably the SERCA pumps.-Houdou, M., Lebredonchel, E., Garat, A., Duvet, S., Legrand, D., Decool, V., Klein, A., Ouzzine, M., Gasnier, B., Potelle, S., Foulquier, F. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Manganeso/farmacología , Proteínas de la Membrana/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología , Antiportadores , Transporte Biológico , Calcio/metabolismo , Proteínas de Transporte de Catión , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Glicosilación , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Homeostasis , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
6.
Electrophoresis ; 39(24): 3133-3141, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29947113

RESUMEN

Congenital disorders of glycosylation (CDG) are heterogeneous group of genetic protein and lipid glycosylation abnormalities. With some 33 reported patients, MAN1B1-CDG belongs to the more frequent causes of CDG-II. MAN1B1 encodes an α1,2-mannosidase that removes the terminal mannose residue from the middle branch. Several methods have been proposed to characterize the glycosylation changes. In MAN1B1-CDG, the abnormal accumulating N-glycan structures are mostly absent or found in trace amounts in total human serum. To overcome this issue, in this study, we present a straightforward procedure based on the use of Endo-ß-N-acetylglucosaminidase H to easily diagnose MAN1B1-CDG patients and mannosidase defects.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Glicómica/métodos , Glicósido Hidrolasas/metabolismo , Polisacáridos/análisis , Secuencia de Carbohidratos , Humanos , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Biochim Biophys Acta Gen Subj ; 1862(3): 394-402, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29108953

RESUMEN

The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Aparato de Golgi/metabolismo , Manganeso/metabolismo , Mananos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Canales de Calcio/química , Canales de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Secuencia Conservada , Glicosilación , Transporte Iónico , Chaperonas Moleculares/metabolismo , Monosacáridos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Exp Med ; 214(12): 3707-3729, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29127204

RESUMEN

The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/genética , Genes Ligados a X , Proteínas de la Membrana/genética , Mutación/genética , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Sanguíneas/metabolismo , Encéfalo/embriología , Encéfalo/patología , Cutis Laxo/complicaciones , Cutis Laxo/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Fibroblastos/patología , Glicosilación , Humanos , Lactante , Lípidos/química , Hígado/patología , Hepatopatías/complicaciones , Hepatopatías/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , ATPasas de Translocación de Protón/deficiencia , ATPasas de Translocación de Protón/metabolismo , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/patología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/deficiencia , Adulto Joven
9.
Biochem J ; 474(9): 1481-1493, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28270545

RESUMEN

TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn2+-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+-induced degradation of TMEM165.


Asunto(s)
Aparato de Golgi/efectos de los fármacos , Lisosomas/efectos de los fármacos , Manganeso/farmacología , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Antiportadores , Western Blotting , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Transporte de Catión , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Glutamatos/genética , Glutamatos/metabolismo , Glicosilación/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Mutación , Proteolisis/efectos de los fármacos
10.
Biochim Biophys Acta Gen Subj ; 1861(4): 737-748, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28088503

RESUMEN

BACKGROUND: Defects in TMEM165 gene cause a type-II Congenital Disorder of Glycosylation affecting Golgi glycosylation processes. TMEM165 patients exhibit psychomotor retardation, important osteoporosis, scoliosis, irregular epiphyses and thin bone cortex. TMEM165 protein is highly conserved in evolution and belongs to the family of UPF0016 membrane proteins which could be an unique group of Ca2+/H+ antiporters regulating Ca2+ and pH homeostasis and mainly localized in the Golgi apparatus. METHODS: RT-PCR from human brain tissues revealed TMEM165 splice-transcript variants. mRNA expression was analyzed by RT-Q-PCR. Expression plasmids allowed us to visualize isoform proteins and their subcellular localization. Their functions on glycosylation were achieved by looking at the gel mobility of highly glycosylated proteins in cells overexpressing isoforms. RESULTS: In this study, we highlight, as previously shown for other ion channels, the existence of TMEM165 splice-transcripts isoforms, in particular the Short-Form (SF) and the Long-Form (LF) transcripts, leading to a 129 aa and 259 aa protein isoform, respectively. These proteins both localize in the endoplasmic reticulum and have different effects on glycosylation compared to the wild-type protein (324 aa). We also point out that the SF is expressed at low levels in all human cells and tissues checked, excepted in brain, and forms homodimer. The LF was only expressed in the temporal lobe of human brain. GENERAL SIGNIFICANCE: The finding of numerous splice variants could lead to a family of TMEM165 isoforms. This family of TMEM165 splice transcripts could participate in the fine regulation of TMEM165 isoforms' functions and localizations.


Asunto(s)
Empalme Alternativo/genética , Trastornos Congénitos de Glicosilación/genética , Variación Genética/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Antiportadores , Encéfalo/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión , Línea Celular Tumoral , Retículo Endoplásmico/genética , Glicosilación , Aparato de Golgi/genética , Células HeLa , Humanos , Isoformas de Proteínas/genética , ARN Mensajero/genética
11.
Hum Mol Genet ; 25(8): 1489-500, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27008884

RESUMEN

Congenital disorders of glycosylation (CDG) are severe inherited diseases in which aberrant protein glycosylation is a hallmark. From this genetically and clinically heterogenous group, a significant subgroup due to Golgi homeostasis defects is emerging. We previously identified TMEM165 as a Golgi protein involved in CDG. Extremely conserved in the eukaryotic reign, the molecular mechanism by which TMEM165 deficiencies lead to Golgi glycosylation abnormalities is enigmatic. AsGDT1 is the ortholog of TMEM165 in yeast, both gdt1Δ null mutant yeasts and TMEM165 depleted cells were used. We highlighted that the observed Golgi glycosylation defects due to Gdt1p/TMEM165 deficiency result from Golgi manganese homeostasis defect. We discovered that in both yeasts and mammalian Gdt1p/TMEM165-deficient cells, Mn(2+) supplementation could restore a normal glycosylation. We also showed that the GPP130 Mn(2+) sensitivity was altered in TMEM165 depleted cells. This study not only provides novel insights into the molecular causes of glycosylation defects observed in TMEM165-deficient cells but also suggest that TMEM165 is a key determinant for the regulation of Golgi Mn(2+) homeostasis.


Asunto(s)
Proteínas Fúngicas/genética , Aparato de Golgi/fisiología , Manganeso/farmacología , Proteínas de la Membrana/deficiencia , Mutación , Antiportadores , Proteínas de Transporte de Catión , Trastornos Congénitos de Glicosilación/genética , Proteínas Fúngicas/metabolismo , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Manganeso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
J Biol Chem ; 289(14): 9611-22, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550399

RESUMEN

Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Citosol/enzimología , Oligosacáridos/metabolismo , alfa-Manosidasa/metabolismo , Animales , Apoptosis/genética , Cápsula Glomerular/enzimología , Cápsula Glomerular/patología , Citosol/patología , Enterocitos/enzimología , Enterocitos/patología , Fibrosis/enzimología , Fibrosis/genética , Fibrosis/patología , Glucógeno/genética , Glucógeno/metabolismo , Intestino Delgado/enzimología , Intestino Delgado/patología , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Manosa/genética , Manosa/metabolismo , Ratones , Ratones Noqueados , Oligosacáridos/genética , Telencéfalo/enzimología , Telencéfalo/patología , alfa-Manosidasa/genética
13.
Hum Mol Genet ; 23(9): 2391-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24334764

RESUMEN

Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.


Asunto(s)
Dedos/anomalías , Discapacidad Intelectual/metabolismo , Microcefalia/metabolismo , Hipotonía Muscular/metabolismo , Miopía/metabolismo , Obesidad/metabolismo , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Discapacidades del Desarrollo/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibroblastos/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interferencia de ARN , Degeneración Retiniana , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
14.
Hum Mol Genet ; 22(14): 2914-28, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23575229

RESUMEN

TMEM165 has recently been identified as a novel protein involved in CDG-II. TMEM165 has no biological function described so far. Different mutations were recently found in patients with Golgi glycosylation defects and harboring a peculiar skeletal phenotype. In this study, we examined the effect of naturally occurring mutations on the intracellular localization of TMEM165 and their abilities to complement the TMEM165-deficient yeast, gdt1▵. Wild-type TMEM165 was present within Golgi compartment, plasma membrane and late endosomes/lysosomes, whereas mutated TMEM165 were found differentially localized according to the mutations. We demonstrated that, in the yeast functional assay with TMEM165 ortholog Gdt1, the homozygous point mutation correlating with a mild phenotype restores the yeast functional assay, whereas the truncated mutation, associated with severe disease, failed to restore Gdt1 function. These studies highly suggest that these clinically relevant point mutations do not affect the protein function but critically changes the subcellular protein localization. Moreover, the data point to a critical role of the YNRL motif in TMEM165 subcellular localization.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Puntual , Antiportadores , Proteínas de Transporte de Catión , Membrana Celular/genética , Membrana Celular/metabolismo , Endosomas/genética , Endosomas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/química , Señales de Clasificación de Proteína , Transporte de Proteínas
15.
Biochim Biophys Acta ; 1822(7): 1137-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22465033

RESUMEN

Most lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1-6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Disacáridos/metabolismo , Enfermedades por Almacenamiento Lisosomal/enzimología , alfa-Manosidasa/metabolismo , Acetilglucosaminidasa/análisis , Acetilglucosaminidasa/deficiencia , Acetilglucosaminidasa/genética , Animales , Disacáridos/análisis , Células Madre Embrionarias , Marcación de Gen , Túbulos Renales Proximales/enzimología , Macrófagos del Hígado/enzimología , Hígado/enzimología , Lisosomas/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligosacáridos/metabolismo , Oligosacáridos/orina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Distribución Tisular , alfa-Manosidasa/análisis , beta-Glucosidasa/análisis
16.
J Biochem ; 151(4): 439-46, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22337894

RESUMEN

Free oligosaccharides (fOS) are generated as the result of N-glycoproteins catabolism that occurs in two distinct principal pathways: the endoplasmic reticulum-associated degradation (ERAD) of misfolded newly synthesized N-glycoproteins and the mature N-glycoproteins turnover pathway. The O-(2-acetamidO-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) is a potent inhibitor of the O-GlcNAcase (OGA) catalysing the cleavage of ß-O-linked 2-acetamido-2-deoxy-ß-D-glucopyranoside (O-GlcNAc) from serine and threonine residues of post-translationaly O-GlcNAc modified proteins. In order to estimate the impact of O-GlcNAc modification on N-glycoproteins catabolism, fOS were analysed by mass spectrometry (MS). MS analysis revealed the appearance of an unusual population of fOS after PUGNAc treatment. The structures representing this population have been identified as containing non-reducing end GlcNAc residues resulting from incomplete lysosomal fOS degradation. Only observed after PUGNAc treatment, the NButGt, another OGA inhibitor, did not lead to the appearance of this population. These abnormal fOS structures have clearly been shown to accumulate in membrane fractions as the consequence of lysosomal ß-hexosaminidases inhibition by PUGNAc. As lysosomal storage disorders (LSD) are characterized by the accumulation of storage material as fOS in lysosomes, our study evokes that the use of PUGNAc could mimic a LSD. This study clearly points out another off target effects of PUGNAc that need to be taken into account in the use of this drug.


Asunto(s)
Acetilglucosamina/análogos & derivados , Oligosacáridos/metabolismo , Oximas/farmacología , Fenilcarbamatos/farmacología , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Acetilglucosamina/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células CHO , Membrana Celular/metabolismo , Cricetinae , Citosol/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Biochimie ; 93(5): 823-33, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21315133

RESUMEN

Protein N-glycosylation is initiated by the dolichol cycle in which the oligosaccharide precursor Glc(3)Man(9)GlcNAc(2)-PP-dolichol is assembled in the endoplasmic reticulum (ER). One critical step in the dolichol cycle concerns the availability of Dol-P at the cytosolic face of the ER membrane. In RFT1 cells, the lipid-linked oligosaccharide (LLO) intermediate Man(5)GlcNAc(2)-PP-Dol accumulates at the cytosolic face of the ER membrane. Since Dol-P is a rate-limiting intermediate during protein N-glycosylation, continuous accumulation of Man(5)GlcNAc(2)-PP-Dol would block the dolichol cycle. Hence, we investigated the molecular mechanisms by which accumulating Man(5)GlcNAc(2)-PP-Dol could be catabolized in RFT1 cells. On the basis of metabolic labeling experiments and in comparison to human control cells, we identified phosphorylated oligosaccharides (POS), not found in human control cells and present evidence that they originate from the accumulating LLO intermediates. In addition, POS were also detected in other CDG patients' cells accumulating specific LLO intermediates at different cellular locations. Moreover, the enzymatic activity that hydrolyses oligosaccharide-PP-Dol into POS was identified in human microsomal membranes and required Mn(2+) for optimal activity. In CDG patients' cells, we thus identified and characterized POS that could result from the catabolism of accumulating LLO intermediates.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Oligosacáridos/metabolismo , Fosfotransferasas/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Trastornos Congénitos de Glicosilación/patología , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Glucosiltransferasas/genética , Humanos , Manosiltransferasas/genética , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Microsomas/metabolismo , Mutación Missense , Fosforilación , Fosfotransferasas (Fosfomutasas)/genética , Pirofosfatasas/metabolismo
18.
Glycobiology ; 21(3): 363-75, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20978011

RESUMEN

Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Manosidasas/biosíntesis , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación hacia Arriba , Glicosilación , Células HeLa , Humanos , Manosafosfatos/metabolismo , Manosidasas/química , Oligosacáridos/metabolismo , Transfección , Uridina Difosfato Glucosa/metabolismo , alfa-Manosidasa
19.
Glycobiology ; 21(7): 864-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21062782

RESUMEN

Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged ß1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structure.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antígenos CD/metabolismo , Galactosiltransferasas/metabolismo , Aparato de Golgi/fisiología , Sialiltransferasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Antígenos CD/genética , Western Blotting , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Galactosiltransferasas/antagonistas & inhibidores , Galactosiltransferasas/genética , Glicosilación , Aparato de Golgi/química , Células HeLa , Humanos , Técnicas para Inmunoenzimas , Transporte de Proteínas , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/genética
20.
Glycobiology ; 17(10): 1084-93, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17681998

RESUMEN

A glycosyl hydrolase family 38 enzyme, neutral alpha-mannosidase, has been proposed to be involved in hydrolysis of cytosolic free oligosaccharides originating either from ER-misfolded glycoproteins or the N-glycosylation process. Although this enzyme has been isolated from the cytosol, it has also been linked to the ER by subcellular fractionations. We have studied the subcellular localization of neutral alpha-mannosidase by immunofluorescence microscopy and characterized the human recombinant enzyme with natural substrates to elucidate the biological function of this enzyme. Immunofluorescence microscopy showed neutral alpha-mannosidase to be absent from the ER, lysosomes, and autophagosomes, and being granularly distributed in the cytosol. In experiments with fluorescent recovery after photo bleaching, neutral alpha-mannosidase had slower than expected two-phased diffusion in the cytosol. This result together with the granular appearance in immunostaining suggests that portion of the neutral alpha-mannosidase pool is somehow complexed. The purified recombinant enzyme is a tetramer and has a neutral pH optimum for activity. It hydrolyzed Man(9)GlcNAc to Man(5)GlcNAc in the presence of Fe(2+), Co(2+), and Mn(2+), and uniquely to neutral alpha-mannosidases from other organisms, the human enzyme was more activated by Fe(2+) than Co(2+). Without activating cations the main reaction product was Man(8)GlcNAc, and Cu(2+) completely inhibited neutral alpha-mannosidase. Our findings from enzyme-substrate characterizations and subcellular localization studies support the suggested role for neutral alpha-mannosidase in hydrolysis of soluble cytosolic oligomannosides.


Asunto(s)
Citosol/enzimología , Oligosacáridos/metabolismo , alfa-Manosidasa/metabolismo , Animales , Autofagia , Células CHO/ultraestructura , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Glicosilación , Humanos , Hidrólisis , Inmunización , Inmunoglobulina G/inmunología , Lisosomas/metabolismo , Masculino , Microscopía Confocal , Microscopía Fluorescente , Pichia/crecimiento & desarrollo , Pichia/metabolismo , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA