Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 19(6): 20230129, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282490

RESUMEN

Over the past two decades, there has been an astounding growth in the documentation of vertebrate facultative parthenogenesis (FP). This unusual reproductive mode has been documented in birds, non-avian reptiles-specifically lizards and snakes-and elasmobranch fishes. Part of this growth among vertebrate taxa is attributable to awareness of the phenomenon itself and advances in molecular genetics/genomics and bioinformatics, and as such our understanding has developed considerably. Nonetheless, questions remain as to its occurrence outside of these vertebrate lineages, most notably in Chelonia (turtles) and Crocodylia (crocodiles, alligators and gharials). The latter group is particularly interesting because unlike all previously documented cases of FP in vertebrates, crocodilians lack sex chromosomes and sex determination is controlled by temperature. Here, using whole-genome sequencing data, we provide, to our knowledge, the first evidence of FP in a crocodilian, the American crocodile, Crocodylus acutus. The data support terminal fusion automixis as the reproductive mechanism; a finding which suggests a common evolutionary origin of FP across reptiles, crocodilians and birds. With FP now documented in the two main branches of extant archosaurs, this discovery offers tantalizing insights into the possible reproductive capabilities of the extinct archosaurian relatives of crocodilians and birds, notably members of Pterosauria and Dinosauria.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Tortugas , Animales , Caimanes y Cocodrilos/genética , Evolución Biológica , Genómica , Aves/genética , Partenogénesis
2.
Acta Trop ; 193: 113-123, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30831113

RESUMEN

The genus Porthidium includes nine pitviper species inhabiting Mexico, Central America, and northern South America. Porthidium porrasi is a species endemic to the Southwest of Costa Rica, for which no information on its venom was available. In this study, the proteomic composition and functional activities of P. porrasi venom are described. The most abundant venom proteins were identified as metalloproteinases (36.5%). In descending order of abundance, proteins belonging to the disintegrin, phospholipase A2, serine proteinase, C-type lectin/lectin-like, vascular endothelial growth factor, Cysteine-rich secretory protein, L-amino acid oxidase, phospholipase B, and phosphodiesterase families were also identified. P. porrasi venom showed a weak lethal potency in mice (10 µg/g body weight by intraperitoneal route), induced marked hemorrhage and edema, and weak myotoxic effect. These in vivo activities, as well as those assayed in vitro (proteolytic and phospholipase A2 activities) correlated with compositional data. A comparison of P. porrasi venom with those of three other Porthidium species studied to date reveals a generally conserved compositional and functional pattern in this pitviper genus. Importantly, the lethal effect of P. porrasi venom in mice was adequately cross-neutralized by a heterospecific polyvalent antivenom, supporting its use in the treatment of eventual envenomings by this species.


Asunto(s)
Antivenenos/inmunología , Venenos de Crotálidos/enzimología , Venenos de Crotálidos/inmunología , Crotalinae , Factores Inmunológicos/inmunología , Animales , Antivenenos/uso terapéutico , Costa Rica , Factores Inmunológicos/uso terapéutico , Metaloproteasas/análisis , Ratones , Proteómica
3.
J Proteomics ; 152: 1-12, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27777178

RESUMEN

Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP-rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA2-rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. SIGNIFICANCE: Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus.


Asunto(s)
Biodiversidad , Venenos de Crotálidos/química , Proteoma/análisis , Factores de Edad , Animales , Evolución Biológica , Venenos de Crotálidos/enzimología , Fosfolipasas A2/análisis , Filogenia , Proteómica/métodos , Serina Proteasas/análisis , Toxinas Biológicas/análisis , Viperidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...