Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurooncol Adv ; 6(1): vdae098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239570

RESUMEN

Background: Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods: Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results: Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions: Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.

2.
J Am Soc Mass Spectrom ; 35(7): 1550-1555, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38836362

RESUMEN

Heparin, a widely used clinical anticoagulant, is generally well-tolerated; however, approximately 1% of patients develop heparin-induced thrombocytopenia (HIT), a serious side effect. While efforts to understand the role of chemokines in HIT development are ongoing, certain aspects remain less studied, such as the stabilization of chemokine oligomers by heparin. Here, we conducted a combined ion mobility-native mass spectrometry study to investigate the stability of chemokine oligomers and their complexes with fondaparinux, a synthetic heparin analog. Collision-induced dissociation and unfolding experiments provided clarity on the specificity and relevance of chemokine oligomers and their fondaparinux complexes with varying stoichiometries, as well as the stabilizing effects of fondaparinux binding.


Asunto(s)
Anticoagulantes , Fondaparinux , Polisacáridos , Fondaparinux/química , Fondaparinux/farmacología , Polisacáridos/química , Polisacáridos/metabolismo , Anticoagulantes/química , Anticoagulantes/farmacología , Quimiocinas/química , Quimiocinas/metabolismo , Humanos , Heparina/química , Heparina/metabolismo , Unión Proteica , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos
3.
Sci Signal ; 16(810): eadf2537, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934811

RESUMEN

Chemokine-driven leukocyte recruitment is a key component of the immune response and of various diseases. Therapeutically targeting the chemokine system in inflammatory disease has been unsuccessful, which has been attributed to redundancy. We investigated why chemokines instead have specific, specialized functions, as demonstrated by multiple studies. We analyzed the expression of genes encoding chemokines and their receptors across species, tissues, and diseases. This analysis revealed complex expression patterns such that genes encoding multiple chemokines that mediated recruitment of the same leukocyte type were expressed in the same context, such as the genes encoding the CXCR3 ligands CXCL9, CXCL10, and CXCL11. Through biophysical approaches, we showed that these chemokines differentially interacted with extracellular matrix glycosaminoglycans (ECM GAGs), which was enhanced by sulfation of specific GAGs. Last, in vivo approaches demonstrated that GAG binding was critical for the CXCL9-dependent recruitment of specific T cell subsets but not of others, irrespective of CXCR3 expression. Our data demonstrate that interactions with ECM GAGs regulated whether chemokines were presented on cell surfaces or remained more soluble, thereby affecting chemokine availability and ensuring specificity of chemokine action. Our findings provide a mechanistic understanding of chemokine-mediated immune cell recruitment and identify strategies to target specific chemokines during inflammatory disease.


Asunto(s)
Quimiocina CXCL10 , Proteoglicanos , Humanos , Quimiocinas/genética , Leucocitos , Matriz Extracelular/genética , Inflamación/genética
4.
Osteoarthritis Cartilage ; 31(10): 1353-1364, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37257556

RESUMEN

OBJECTIVE: To investigate the role of endogenous TSG-6 in human osteoarthritis (OA) and assess the disease-modifying potential of a TSG-6-based biological treatment in cell, explant and animal models of OA. DESIGN: Knee articular cartilages from OA patients were analyzed for TSG-6 protein and mRNA expression using immunohistochemistry and RNAscope, respectively. The inhibitory activities of TSG-6 and its isolated Link module (Link_TSG6) on cytokine-induced degradation of OA cartilage explants were compared. Human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures were used to determine the effects of Link_TSG6 and full-length TSG-6 on IL-1α-, IL-1ß-, or TNF-stimulated ADAMTS4, ADAMTS5, and MMP13 mRNA expression. Link_TSG6 was administered i.a. to the rat ACLTpMMx model; cartilage damage and tactile allodynia were assessed. RESULTS: TSG-6 is predominantly associated with chondrocytes in regions of cartilage damage where high TSG-6 expression aligns with low MMP13, the major collagenase implicated in OA progression. Link_TSG6 is more potent than full-length TSG-6 at inhibiting cytokine-mediated matrix breakdown in human OA cartilage explants;>50% of donor cartilages, from 59 tested, were responsive to Link_TSG6 treatment. Link_TSG6 also displayed more potent effects in 3D pellet cultures, suppressing ADAMTS4, ADAMTS5, and MMP13 gene expression, which was consistent with reduced aggrecanase and collagenase activities in explant cultures. Link_TSG6 treatment reduced touch-evoked pain behavior and dose-dependently inhibited cartilage damage in a rodent model of surgically-induced OA. CONCLUSIONS: Link_TSG6 has enhanced chondroprotective activity compared to the full-length TSG-6 protein and shows potential as a disease modifying OA drug via its inhibition of aggrecanase and collagenase activity.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratas , Animales , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo , ARN Mensajero/metabolismo
5.
Neurosurgery ; 92(3): 581-589, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729787

RESUMEN

BACKGROUND: There is evidence that macrophage infiltration in the tumor microenvironment promotes vestibular schwannoma (VS) growth. Efficacy of bevacizumab in NF2-associated VS demonstrates the value of therapies targeting the microvascular tumor microenvironment, and tumor-associated macrophages (TAMs) may represent another druggable target. OBJECTIVE: To characterize the relationship between growth, TAM infiltration, and circulating monocyte chemokines in a large cohort of patients with VS. METHODS: Immunostaining for Iba1 (macrophages), CD31 (endothelium), and fibrinogen (permeability) was performed on 101 growing and 19 static sporadic VS. The concentrations of monocyte-specific chemokines were measured in the plasma of 50 patients with growing VS and 25 patients with static VS. RESULTS: The Iba1 + cell count was significantly higher in growing as compared with static VS (592 vs 226/×20 HPF, P =<0.001). Similarly, the CD31 + % surface area was higher in growing VS (2.19% vs 1.32%, P = .01). There was a positive correlation between TAM infiltration and VS growth rate, which persisted after controlling for the effect of tumor volume (aR2 = 0.263, P =<0.001). The plasma concentrations of several monocytic chemokines were higher in patients with growing rather than static VS. CONCLUSION: There is a strong positive correlation between TAM infiltration and volumetric growth of VS, and this relationship is independent of tumor size. There is a colinear relationship between TAM infiltration and tumor vascularity, implying that inflammation and angiogenesis are interlinked in VS. Chemokines known to induce monocyte chemotaxis are found in higher concentrations in patients with growing VS, suggestive of a potential pathophysiological mechanism.


Asunto(s)
Neuroma Acústico , Humanos , Neuroma Acústico/patología , Quimiocinas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Microambiente Tumoral
6.
Science ; 379(6633): eabp8964, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36795835

RESUMEN

For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.


Asunto(s)
Proteínas de la Matriz Extracelular , Matriz Extracelular , Sistema Inmunológico , Matriz Extracelular/inmunología , Proteínas de la Matriz Extracelular/metabolismo , Sistema Inmunológico/citología , Humanos , Animales
7.
Cell Rep ; 42(1): 111930, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640356

RESUMEN

Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.


Asunto(s)
Factor Plaquetario 4 , Proteoglicanos , Factor Plaquetario 4/metabolismo , Receptores de Quimiocina , Quimiocinas/metabolismo , Glicosaminoglicanos , Matriz Extracelular/metabolismo
8.
Elife ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699420

RESUMEN

Inflammatory chemokines and their receptors are central to the development of inflammatory/immune pathologies. The apparent complexity of this system, coupled with lack of appropriate in vivo models, has limited our understanding of how chemokines orchestrate inflammatory responses and has hampered attempts at targeting this system in inflammatory disease. Novel approaches are therefore needed to provide crucial biological, and therapeutic, insights into the chemokine-chemokine receptor family. Here, we report the generation of transgenic multi-chemokine receptor reporter mice in which spectrally distinct fluorescent reporters mark expression of CCRs 1, 2, 3, and 5, key receptors for myeloid cell recruitment in inflammation. Analysis of these animals has allowed us to define, for the first time, individual and combinatorial receptor expression patterns on myeloid cells in resting and inflamed conditions. Our results demonstrate that chemokine receptor expression is highly specific, and more selective than previously anticipated.


Asunto(s)
Quimiocinas , Inflamación , Animales , Proteínas Portadoras , Quimiocinas/genética , Quimiocinas/metabolismo , Expresión Génica , Inflamación/patología , Ratones
9.
Immunol Cell Biol ; 100(6): 387-389, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35466477

RESUMEN

In a recent article published in Immunology & Cell Biology, Dalit et al. describe how correcting mutations in the C57BL/6 mouse strain can restore production of the chemokine CXCL11, although surprisingly, this expression of CXCL11 had little effect on B and T cells and the innate immune response to infection with lymphocytic choriomeningitis virus or influenza virus.


Asunto(s)
Quimiocina CXCL11 , Quimiocinas , Inmunidad Innata , Animales , Infecciones por Arenaviridae/inmunología , Linfocitos B/inmunología , Quimiocina CXCL11/genética , Ligandos , Virus de la Coriomeningitis Linfocítica , Ratones , Ratones Endogámicos C57BL , Receptores CXCR3 , Linfocitos T/inmunología
10.
Glia ; 70(6): 1068-1083, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35150591

RESUMEN

Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume-regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A-knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12-dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.


Asunto(s)
Microglía , Accidente Cerebrovascular , Animales , Tamaño de la Célula , Transporte Iónico , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo
11.
Int J Exp Pathol ; 103(2): 34-43, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076142

RESUMEN

Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.


Asunto(s)
Matriz Extracelular , Proteoglicanos , Matriz Extracelular/metabolismo , Glicosaminoglicanos , Proteoglicanos/metabolismo
12.
Nat Rev Immunol ; 22(2): 124-138, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34211187

RESUMEN

Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-ß (TGFß). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.


Asunto(s)
Neoplasias , Calidad de Vida , Humanos , Inmunidad , Inmunomodulación , Inmunoterapia
13.
Sci Adv ; 7(52): eabl6026, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936441

RESUMEN

Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)­specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.

15.
Immunology ; 160(4): 336-344, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32285441

RESUMEN

Chemokines (chemotactic cytokines) and their receptors are critical to recruitment and positioning of cells during development and the immune response. The chemokine system has long been described as redundant for a number of reasons, where multiple chemokine ligands can bind to multiple receptors and vice versa. This apparent redundancy has been thought to be a major reason for the failure of drugs targeting chemokines during inflammatory disease. We are now beginning to understand that chemokine biology is in fact based around a high degree of specificity, where each chemokine and receptor plays a particular role in the immune response. This specificity hypothesis is supported by a number of recent studies designed to address this problem. This review will detail these studies and the mechanisms that produce this specificity of function with an emphasis on the emerging role of chemokine-glycosaminoglycan interactions.


Asunto(s)
Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Inflamación/inmunología , Leucocitos/inmunología , Receptores de Quimiocina/metabolismo , Animales , Movimiento Celular , Quimiotaxis/inmunología , Humanos , Especificidad de Órganos
16.
Sci Signal ; 12(598)2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506383

RESUMEN

Chemokines bind to membrane-spanning chemokine receptors, which signal through G proteins and promote cell migration. However, atypical chemokine receptor 3 (ACKR3) does not appear to couple to G proteins, and instead of directly promoting cell migration, it regulates the extracellular concentration of chemokines that it shares with the G protein-coupled receptors (GPCRs) CXCR3 and CXCR4, thereby influencing the responses of these receptors. Understanding how these receptors bind their ligands is important for understanding these different processes. Here, we applied association and dissociation kinetic measurements coupled to ß-arrestin recruitment assays to investigate ACKR3:chemokine interactions. Our results showed that CXCL12 binding is unusually slow and driven by the interplay between multiple binding epitopes. We also found that the amino terminus of the receptor played a key role in chemokine binding and activation by preventing chemokine dissociation. It was thought that chemokines initially bind receptors through interactions between the globular domain of the chemokine and the receptor amino terminus, which then guides the chemokine amino terminus into the transmembrane pocket of the receptor to initiate signaling. On the basis of our kinetic data, we propose an alternative mechanism in which the amino terminus of the chemokine initially forms interactions with the extracellular loops and transmembrane pocket of the receptor, which is followed by the receptor amino terminus wrapping around the core of the chemokine to prolong its residence time. These data provide insight into how ACKR3 competes and cooperates with canonical GPCRs in its function as a scavenger receptor.


Asunto(s)
Quimiocina CXCL12/metabolismo , Quimiocinas/metabolismo , Receptores CXCR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Quimiocina CXCL12/química , Quimiocina CXCL12/genética , Quimiocinas/química , Quimiocinas/genética , Células HEK293 , Humanos , Cinética , Ligandos , Unión Proteica , Dominios Proteicos , Receptores CXCR/química , Receptores CXCR/genética , Receptores CXCR3/química , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , beta-Arrestinas/química , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
17.
Immunity ; 50(2): 378-389.e5, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784579

RESUMEN

Currently, we lack an understanding of the individual and combinatorial roles for chemokine receptors in the inflammatory process. We report studies on mice with a compound deletion of Ccr1, Ccr2, Ccr3, and Ccr5, which together control monocytic and eosinophilic recruitment to resting and inflamed sites. Analysis of resting tissues from these mice, and mice deficient in each individual receptor, provides clear evidence for redundant use of these receptors in establishing tissue-resident monocytic cell populations. In contrast, analysis of cellular recruitment to inflamed sites provides evidence of specificity of receptor use for distinct leukocyte subtypes and no indication of comprehensive redundancy. We find no evidence of involvement of any of these receptors in the recruitment of neutrophils or lymphocytes to resting or acutely inflamed tissues. Our data shed important light on combinatorial inflammatory chemokine receptor function and highlight Ccr2 as the primary driver of myelomonocytic cell recruitment in acutely inflamed contexts.


Asunto(s)
Eosinófilos/inmunología , Inflamación/inmunología , Monocitos/inmunología , Receptores CCR/inmunología , Animales , Quimiocinas/inmunología , Quimiocinas/metabolismo , Eosinófilos/metabolismo , Perfilación de la Expresión Génica/métodos , Inflamación/genética , Inflamación/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores CCR1/inmunología , Receptores CCR1/metabolismo , Receptores CCR2/inmunología , Receptores CCR2/metabolismo , Receptores CCR3/inmunología , Receptores CCR3/metabolismo , Receptores CCR5/inmunología , Receptores CCR5/metabolismo
18.
J Leukoc Biol ; 105(3): 497-506, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30517976

RESUMEN

Chemokines are members of a large family of chemotactic cytokines that signal through their receptors to mediate leukocyte recruitment during inflammation and homeostasis. The chemokine receptor CXCR2 has largely been associated with neutrophil recruitment. However, there is emerging evidence of roles for chemokines and their receptors in processes other than leukocyte migration. We have previously demonstrated that CXCR2 knockout (KO) mice have thinner skin compared to wild-type mice. Herein we demonstrate that this is due to a thinner subcutaneous adipose layer, as a result of fewer and smaller individual adipocytes. We observe a similar phenotype in other fat depots and present data that suggests this may be due to reduced expression of adipogenesis related genes associated with adipocyte specific CXCR2 signaling. Interestingly, this phenotype is evident in female, but not male, CXCR2 KO mice. These findings expand our understanding of nonleukocyte related chemokine receptor functions and help to explain some previously observed adipose-related phenotypes in CXCR2 KO mice.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Receptores de Interleucina-8B/metabolismo , Células 3T3-L1 , Adipogénesis/genética , Animales , Diferenciación Celular/genética , Tamaño de la Célula , Regulación hacia Abajo/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Interleucina-8B/antagonistas & inhibidores , Grasa Subcutánea/anatomía & histología , Grasa Subcutánea/citología
20.
Sci Rep ; 7: 42681, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205614

RESUMEN

CXCR2 is an essential regulator of neutrophil recruitment to inflamed and damaged sites and plays prominent roles in inflammatory pathologies and cancer. It has therefore been highlighted as an important therapeutic target. However the success of the therapeutic targeting of CXCR2 is threatened by our relative lack of knowledge of its precise in vivo mode of action. Here we demonstrate that CXCR2-deficient mice display a counterintuitive transient exaggerated inflammatory response to cutaneous and peritoneal inflammatory stimuli. In both situations, this is associated with reduced expression of cytokines associated with the resolution of the inflammatory response and an increase in macrophage accumulation at inflamed sites. Analysis using neutrophil depletion strategies indicates that this is a consequence of impaired recruitment of a non-neutrophilic CXCR2 positive leukocyte population. We suggest that these cells may be myeloid derived suppressor cells. Our data therefore reveal novel and previously unanticipated roles for CXCR2 in the orchestration of the inflammatory response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...