Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Psychiatry ; 23(1): 696, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749515

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS: Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS: We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS: The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , MicroARNs , Humanos , Niño , Femenino , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , MicroARNs/genética , Trastorno del Espectro Autista/psicología , Cohorte de Nacimiento , Biomarcadores , Agitación Psicomotora/complicaciones
2.
PLoS One ; 15(4): e0231040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240265

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have been linked to several diseases and to regulation of almost every biological process. This together with their stability while freely circulating in blood suggests that they could serve as minimal-invasive biomarkers for a wide range of diseases. Successful miRNA-based biomarker discovery in plasma is dependent on controlling sources of preanalytical variation, such as cellular contamination and hemolysis, as they can be major causes of altered miRNA expression levels. Analysis of plasma quality is therefore a crucial step for the best output when searching for novel miRNA biomarkers. METHODS: Plasma quality was assessed by three different methods in samples from mother-child duos (maternal and cord blood, N = 2x38), with collection and storage methods comparable to large cohort study biobanks. Total RNA was isolated and the expression profiles of 201 miRNAs was obtained by qPCR to identify differentially expressed miRNAs in cord and maternal plasma samples. RESULTS: All three methods for quality assurance indicate that the plasma samples used in this study are of high quality with very low levels of contamination, suitable for analysis of circulating miRNAs. We identified 19 significantly differentially expressed miRNAs between cord and maternal plasma samples (paired t-tests, FDR<0.05, and fold change>±1.5), and we observed low correlation of miRNA transcript levels between cord and maternal samples throughout our dataset. CONCLUSIONS: Our findings suggest that good quality plasma samples suitable for miRNA profiling can be achieved from samples collected and stored by large biobanks. Incorporation of extensive quality control measures, such as those established here, would be beneficial for future projects. The overall low correlation of miRNA expression between cord and maternal samples is an interesting observation, and promising for our future studies on identification of miRNA-based biomarkers in cord blood plasma, considering that these samples were collected at term and some exchange of blood components between cord and maternal blood frequently occur.


Asunto(s)
Biomarcadores/sangre , MicroARN Circulante/genética , MicroARN Circulante/metabolismo , Plasma/metabolismo , Bancos de Muestras Biológicas , Niño , Salud Infantil , Estudios de Cohortes , Femenino , Humanos , Masculino , Madres , Proyectos Piloto
3.
Carbohydr Polym ; 180: 256-263, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29103504

RESUMEN

A family of seven mannuronan C5-epimerases (AlgE1-AlgE7) produced by Azotobacter vinelandii is able to convert ß-d-mannuronate (M) to its epimer α-l-guluronate (G) in alginates. Even sharing high sequence homology at the amino acid level, they produce distinctive epimerization patterns. The introduction of new G-blocks into the polymer by in vitro epimerization is a strategy to improve the mechanical properties of alginates as biomaterial. However, epimerization is hampered when the substrate is modified or in the gelled state. Here it is presented how native and engineered epimerases of varying size perform on steric hindered alginate substrates (modified or as hydrogels). Reducing the size of the epimerases enables the epimerization of otherwise inaccessible regions in the alginate polymer. Even though the reduction of the size affects the productive binding of epimerases to the substrate, and hence their activity, the smaller epimerases could more freely diffuse into calcium-alginate hydrogel and epimerize it.


Asunto(s)
Alginatos/química , Azotobacter/enzimología , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , Hidrogeles/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Dominio Catalítico , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...