Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 34(3): 989-1001, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34792584

RESUMEN

The triploid block, which prevents interploidy hybridizations in flowering plants, is characterized by a failure in endosperm development, arrest in embryogenesis, and seed collapse. Many genetic components of triploid seed lethality have been successfully identified in the model plant Arabidopsis thaliana, most notably the paternally expressed genes (PEGs), which are upregulated in tetraploid endosperm with paternal excess. Previous studies have shown that the paternal epigenome is a key determinant of the triploid block response, as the loss of DNA methylation in diploid pollen suppresses the triploid block almost completely. Here, we demonstrate that triploid seed collapse is bypassed in Arabidopsis plants treated with the DNA methyltransferase inhibitor 5-Azacytidine during seed germination and early growth. We identified strong suppressor lines showing stable transgenerational inheritance of hypomethylation in the CG context, as well as normalized expression of PEGs in triploid seeds. Importantly, differentially methylated loci segregate in the progeny of "epimutagenized" plants, which may allow epialleles involved in the triploid block response to be identified in future studies. Finally, we demonstrate that chemically induced epimutagenesis facilitates hybridization between different Capsella species, thus potentially emerging as a strategy for producing triploids and interspecific hybrids with high agronomic interest.


Asunto(s)
Arabidopsis , Triploidía , Arabidopsis/genética , Diploidia , Endospermo/genética , Semillas/genética
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200118, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866810

RESUMEN

The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Asunto(s)
Endospermo/genética , Epigénesis Genética , Fenómenos Fisiológicos de las Plantas/genética , Plantas/genética , Aislamiento Reproductivo , Desarrollo de la Planta/genética
3.
PLoS Genet ; 17(2): e1009370, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571184

RESUMEN

Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.


Asunto(s)
Capsella/genética , Cromatina/genética , Endospermo/genética , Hibridación Genética , Semillas/genética , Capsella/clasificación , Centrómero/genética , Cromatina/metabolismo , Aberraciones Cromosómicas , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...