Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38475182

RESUMEN

This paper presents an innovative approach to the integration of thermoelectric microgenerators (µTEGs) based on thick-film thermopiles of planar constantan-silver (CuNi-Ag) and calcium cobaltite oxide-silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (µTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology.

2.
Dalton Trans ; 52(9): 2580-2591, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36756813

RESUMEN

Different types of ferrite core-shell structures, namely CoFe2O4@CoFe2O4, CoFe2O4@Fe3O4, CoFe2O4@MnFe2O4, and CoFe2O4@MnFe2O4@ZnFe2O4, were prepared by the seed-mediated approach. We show that this synthetic methodology offers great and important flexibility in the engineering of multi-shell ferrite nanoparticles which can be further used in various advanced applications. This impressive tool can be used for particle size tuning of homo- and heterostructures through convenient control of the concentration of metal acetylacetonates without the necessity of changing synthetic parameters, i.e., temperature, time, and solvent. The contactless conversion of laser light within Ist (808 nm) and IInd (1122 nm) biological optical windows was studied on the fabricated ferrite core-shell materials which showed promising heating effects that can be a basis of their practical exploitation in the biomedical field.

3.
J Phys Chem B ; 126(42): 8515-8531, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36225102

RESUMEN

Magnetic nanoparticle (MNP) anisotropy has been tailored by the preparation of MNPs having different shapes (star-like, cubic, and polyhedral) using a self-modified rapid hot-injection process. The surface modification of MNPs was performed through etidronic ligand grafting with a strong binding affinity to mixed metal oxides, ensuring sufficient colloidal stability, surface protection, and minimized aggregation and interparticle interactions. The heating effect was induced by contactless external stimulation through the action of an alternating magnetic field and NIR laser radiation (808 nm). The efficacy of the energy conversion was evaluated as a function of the particle shape, concentration, and external stimuli parameters. In turn, the most efficient star-like particles have been selected to study their response in contact with normal and cancer cells. It was found that the star-like MNPs (Fe3O4 SL-NPs) at 2 mg/mL concentration induce necrosis and significantly alter cell cycle progression, while 0.5 mg/mL can stimulate the antioxidative and anti-inflammatory response in normal cells. A biologically relevant heating effect leading to heat-mediated cell death was achieved at a 2 mg/mL concentration of star-like particles and was enhanced by the addition of ascorbic acid (AA). AA-mediated photomagnetic hyperthermia can lead to the modulation of the heat-shock response in cancer cells that depends on the genotypic and phenotypic variations of cell lines.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Temperatura , Ligandos , Óxidos , Ácido Ascórbico , Antiinflamatorios , Neoplasias/terapia
4.
RSC Adv ; 12(42): 27396-27410, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36276011

RESUMEN

Multipurpose Fe3O4@APTES-Ag heterostructures for mutual heat generation, SERS probing, and antimicrobial activity were fabricated using a three-step process. Silver metallic particles were precipitated on a thin silica shell that served as an interlayer with Fe3O4 nanocubes. The structural properties were studied by means of the powder X-ray diffraction technique, and selected area electron diffraction. Particle size, distribution, and morphology were evaluated using transmission electron microscopy, while element mapping was performed using the STEM-EDS technique. The presence of the silica shell and the effectiveness of the Ag reduction were checked by FTIR-ATR spectroscopy. The heat generation ability was studied by using AMF and NIR contactless external stimulations working separately and simultaneously. We demonstrated that the dual mode stimulation leads to a SAR (specific absorption rate) of 1000 W g-1 with the predominant role of the mechanism associated with the light interaction. The SERS effect was recorded with the use of the R6G standard molecule showing high capability of the heterostructures for Raman signal augmentation. Fe3O4 nanocubes decorated with Ag particles have shown antibacterial activity against P. aeruginosa. The Fe3O4@APTES-Ag presents promising potential as a multipurpose platform for biological applications ranging from photomagnetic therapies, to analytical probes exploiting the SERS effect and antibacterial activity.

5.
ACS Appl Mater Interfaces ; 14(33): 38255-38269, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969717

RESUMEN

Heterostructures of TiO2@Fe2O3 with a specific electronic structure and morphology enable us to control the interfacial charge transport necessary for their efficient photocatalytic performance. In spite of the extensive research, there still remains a profound ambiguity as far as the band alignment at the interface of TiO2@Fe2O3 is concerned. In this work, the extended type I heterojunction between anatase TiO2 nanocrystals and α-Fe2O3 hematite nanograins is proposed. Experimental evidence supporting this conclusion is based on direct measurements such as optical spectroscopy, X-ray photoemission spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), and the results of indirect studies of photocatalytic decomposition of rhodamine B (RhB) with selected scavengers of various active species of OH•, h•, e-, and •O2-. The presence of small 6-8 nm Fe2O3 crystallites at the surface of TiO2 has been confirmed in HRTEM images. Irregular 15-50 nm needle-like hematite grains could be observed in scanning electron micrographs. Substitutional incorporation of Fe3+ ions into the TiO2 crystal lattice is predicted by a 0.16% decrease in lattice parameter a and a 0.08% change of c, as well as by a shift of the Raman Eg(1) peak from 143 cm-1 in pure TiO2 to 149 cm-1 in Fe2O3-modified TiO2. Analysis of O 1s XPS spectra corroborates this conclusion, indicating the formation of oxygen vacancies at the surface of titanium(IV) oxide. The presence of the Fe3+ impurity level in the forbidden band gap of TiO2 is revealed by the 2.80 eV optical transition. The size effect is responsible for the absorption feature appearing at 2.48 eV. Increased photocatalytic activity within the visible range suggests that the electron transfer involves high energy levels of Fe2O3. Well-programed experiments with scavengers allow us to eliminate the less probable mechanisms of RhB photodecomposition and propose a band diagram of the TiO2@Fe2O3 heterojunction.

6.
Materials (Basel) ; 14(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832219

RESUMEN

Mo-Mo2N nanocomposite coating was produced by reactive magnetron sputtering of a molybdenum target, in the atmosphere, of Ar and N2 gases. Coating was deposited on Ti6Al4V titanium alloy. Presented are the results of analysis of the XRD crystal structure, microscopic SEM, TEM and AFM analysis, measurements of hardness, Young's modulus, and adhesion. Coating consisted of α-Mo phase, constituting the matrix, and γ-Mo2N reinforcing phase, which had columnar structure. The size of crystallite phases averaged 20.4 nm for the Mo phase and 14.1 nm for the Mo2N phase. Increasing nitrogen flow rate leads to the fragmentation of the columnar grains and increased hardness from 22.3 GPa to 27.5 GPa. The resulting coating has a low Young's modulus of 230 GPa to 240 GPa. Measurements of hardness and Young's modulus were carried out using the nanoindentation method. Friction coefficient and tribological wear of the coatings were determined with a tribometer, using the multi-cycle oscillation method. Among tested coatings, the lowest friction coefficient was 0.3 and wear coefficient was 10 × 10-16 m3/N∙m. In addition, this coating has an average surface roughness of RMS < 2.4 nm, determined using AFM tests, as well as a good adhesion to the substrate. The dominant wear mechanism of the Mo-Mo2N coatings was abrasive wear and wear by oxidation. The Mo-Mo2N coating produced in this work is a prospective material for the elements of machines and devices operating in dry friction conditions.

7.
Sci Rep ; 11(1): 13451, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188097

RESUMEN

Drug-resistance of bacteria is an ongoing problem in hospital treatment. The main mechanism of bacterial virulency in human infections is based on their adhesion ability and biofilm formation. Many approaches have been invented to overcome this problem, i.e. treatment with antibacterial biomolecules, which have some limitations e.g. enzymatic degradation and short shelf stability. Silver nanoparticles (AgNPs) may be alternative to these strategies due to their unique and high antibacterial properties. Herein, we report on yeast Saccharomyces cerevisiae extracellular-based synthesis of AgNPs. Transmission electron microscopy (TEM) revealed the morphology and structure of the metallic nanoparticles, which showed a uniform distribution and good colloid stability, measured by hydrodynamic light scattering (DLS). The energy dispersive X-ray spectroscopy (EDS) of NPs confirms the presence of silver and showed that sulfur-rich compounds act as a capping agent being adsorbed on the surface of AgNPs. Antimicrobial tests showed that AgNPs inhibit the bacteria growth, while have no impact on fungi growth. Moreover, tested NPs was characterized by high inhibitory potential of bacteria biofilm formation but also eradication of established biofilms. The cytotoxic effect of the NPs on four mammalian normal and cancer cell lines was tested through the metabolic activity, cell viability and wound-healing assays. Last, but not least, ability to deep penetration of the silver colloid to the root canal was imaged by scanning electron microscopy (SEM) to show its potential as the material for root-end filling.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Nanopartículas del Metal , Saccharomyces cerevisiae/química , Plata , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Plata/química , Plata/farmacología
8.
RSC Adv ; 11(34): 20708-20719, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35479344

RESUMEN

The rapid hot-injection (HI) technique was employed to synthesize magnetic nanoparticles with well-defined morphology (octahedrons, cubes, and star-like). It was shown that the proposed synthetic approach could be an alternative for the heat-up and flow hot-injection routes. Instant injection of the precursor to the hot reaction mixture (solvent(s) and additives) at high temperatures promotes fast nucleation and particle directional growth towards specific morphologies. We state that the use of saturated hydrocarbon namely hexadecane (sHD) as a new co-solvent affects the activity coefficient of monomers, forces shape-controllable growth, and allows downsizing of particles. We have shown that the rapid hot-injection route can be extended for other ferrites as well (ZnFe2O4, CoFe2O4, NiFe2O4, and MnFe2O4) which has not been done previously through the HI process before.

9.
Materials (Basel) ; 13(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317033

RESUMEN

The paper concerns modeling the microstructure of a hypereutectic aluminum-silicon alloy developed by the authors with the purpose of application for automobile cylinder liners showing high resistance to abrasive wear at least equal to that of cast-iron liners. With the use of the nanoindentation method, material properties of intermetallic phases and matrix in a hypereutectic Al-Si alloy containing Mn, Cu, Cr, Ni, V, Fe, and Mg as additives were examined. The scanning electron microscope equipped with an adapter for chemical composition microanalysis was used to determine the chemical composition of intermetallics and of the alloy matrix. Intermetallic phases, such as Al(Fe,Mn,M)Si, Al(Cr,V,M)Si, AlFeSi, AlFeNiM, AlCuNi, Al2Cu, and Mg2Si, including those supersaturated with various alloying elements (M), were identified based on results of X-ray diffraction (XRD) tests and microanalysis of chemical composition carried out with the use of X-ray energy dispersive spectroscopy (EDS). Shapes of the phases included regular, irregular, or elongated polygons. On the disclosed intermetallic phases, silicon precipitations, the matrix, values of the indentation hardness (HIT), and the indentation modulus (EIT) were determined by performing nanoindentation tests with the use of a Nanoindentation Tester NHT (CSM Instruments) equipped with a Berkovich B-L 32 diamond indenter. The adopted maximum load value was 20 mN.

11.
J Phys Chem B ; 124(24): 4931-4948, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32407114

RESUMEN

Magnetite nanoparticles (MNPs) were synthesized using two distinctly different approaches, co-precipitation (CP) and thermal decomposition (TD), and further surface functionalized with organophosphonic ligands containing different numbers of phosphonic groups. We have shown that it is possible to fabricate flower-like assemblies of MNPs through TD at lower temperatures, whereas CP MNPs formed agglomerates of particles with broad size distribution and irregular shapes. The effect of the organophosphonic ligands on the heating efficiency of the TD and CP MNPs under dual mode stimulation (simultaneous action of AMF and NIR laser radiation) was studied for the first time. It was found that in the case of the cost-effective CP MNP synthesis surface functionalization with chosen phosphonic ligands leads to higher heating efficiency upon laser stimulation, whereas better performance of TD MNPs was found under the action of AMF due to the significant difference of nanoparticle properties. The biocompatibility of surface functionalized MNPs with organophosphonic ligands was evaluated through thorough studies of the metabolic activity of MNPs in normal human foreskin fibroblasts as well as oxidative stress induction and oxidation stress response which has not been previously reported for most of the organophosphonic moieties used in this study.


Asunto(s)
Nanopartículas de Magnetita , Humanos , Ensayo de Materiales , Temperatura
12.
Microb Cell Fact ; 18(1): 210, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796078

RESUMEN

BACKGROUND: Synthesis of nanoparticles (NPs) and their incorporation in materials are amongst the most studied topics in chemistry, physics and material science. Gold NPs have applications in medicine due to their antibacterial and anticancer activities, in biomedical imaging and diagnostic test. Despite chemical synthesis of NPs are well characterized and controlled, they rely on the utilization of harsh chemical conditions and organic solvent and generate toxic residues. Therefore, greener and more sustainable alternative methods for NPs synthesis have been developed recently. These methods use microorganisms, mainly yeast or yeast cell extract. NPs synthesis with culture supernatants are most of the time the preferred method since it facilitates the purification scheme for the recovery of the NPs. Extraction of NPs, formed within the cells or cell-wall, is laborious, time-consuming and are not cost effective. The bioactivities of NPs, namely antimicrobial and anticancer, are known to be related to NPs shape, size and size distribution. RESULTS: Herein, we reported on the green synthesis of gold nanoparticles (AuNPs) mediated by pyomelanin purified from the yeast Yarrowia lipolytica. A three levels four factorial Box-Behnken Design (BBD) was used to evaluate the influence of temperature, pH, gold salt and pyomelanin concentration on the nanoparticle size distribution. Based on the BBD, a quadratic model was established and was applied to predict the experimental parameters that yield to AuNPs with specific size. The synthesized nanoparticles with median size value of 104 nm were of nanocrystalline structure, mostly polygonal or spherical. They exhibited a high colloidal stability with zeta potential of - 28.96 mV and a moderate polydispersity index of 0.267. The absence of cytotoxicity of the AuNPs was investigated on two mammalian cell lines, namely mouse fibroblasts (NIH3T3) and human osteosarcoma cells (U2OS). Cell viability was only reduced at AuNPs concentration higher than 160 µg/mL. Moreover, they did not affect on the cell morphology. CONCLUSION: Our results indicate that different process parameters affect significantly nanoparticles size however with the mathematical model it is possible to define the size of AuNPs. Moreover, this melanin-based gold nanoparticles showed neither cytotoxicity effect nor altered cell morphology.


Asunto(s)
Oro/metabolismo , Melaninas/metabolismo , Nanopartículas del Metal/química , Yarrowia/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Coloides/química , Coloides/farmacología , Oro/química , Oro/farmacología , Humanos , Melaninas/biosíntesis , Melaninas/aislamiento & purificación , Ratones , Células 3T3 NIH , Propiedades de Superficie , Yarrowia/citología , Yarrowia/crecimiento & desarrollo
13.
Micromachines (Basel) ; 10(9)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450725

RESUMEN

This paper has three main purposes. The first is to investigate whether it is appropriate to use a planar thick-film thermoelectric sensor to monitor the temperature difference in a processor heat sink. The second is to compare the efficiency of two heat sink models. The third is to compare two kinds of sensors, differing in length. The model of the CPU heat sink sensor system was designed for numerical simulations. The relations between the CPU, heat sink, and the thermoelectric sensor were modelled because they are important for increasing the efficiency of fast processors without interfering with their internal structure. The heat sink was mounted on the top of the thermal model of a CPU (9.6 W). The plate fin and pin fin heat sinks were investigated. Two planar thermoelectric sensors were mounted parallel to the heat sink fins. These sensors monitored changes in the temperature difference between the CPU and the upper surface of the heat sink. The system was equipped with a cooling fan. Switching on the fan changed the thermal conditions (free or forced convection). The simulation results showed the temperature gradient appearing along the sensor for different heat sinks and under different thermal conditions. Comparison of the results obtained in the simulations of the CPU heat sink sensor systems proves that changes in the cooling conditions can cause a strong, step change in the response of the thermoelectric sensor. The results suggest that usage of the pin fin heat sink model is a better solution for free convection conditions. In the case of strong forced convection the heat sink type ceases to be significant.

14.
Food Chem ; 268: 567-576, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30064798

RESUMEN

Interaction of metal, especially iron ions with flavanols is considered as an important feature of these compounds and is believed to contribute to their both antioxidant and prooxidant properties. The aim of this study was to examine how Fe2+ binding to form a 4:1 (flavanol:Fe2+) mixtures affects the antioxidant properties of flavanols. ABTS∗ scavenging, protection against fluorescence bleaching induced by AAPH and hypochlorite, protection against lipid peroxidation and protection against hypochlorite-induced hemolysis demonstrated that flavonol-Fe2+ mixtures retain antioxidant properties, although, in most cases, they are lower with respect to the flavanols alone. No superoxide dismutase-like or catalase-like activity of the mixtures was revealed.


Asunto(s)
Antioxidantes/química , Polifenoles/química , Flavonoles , Peroxidación de Lípido
15.
Materials (Basel) ; 11(1)2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329203

RESUMEN

This paper describes the design, manufacturing and characterization of newly developed mixed thick-/thin film thermoelectric microgenerators based on magnetron sputtered constantan (copper-nickel alloy) and screen-printed silver layers. The thermoelectric microgenerator consists of sixteen thermocouples made on a 34.2 × 27.5 × 0.25 mm³ alumina substrate. One of thermocouple arms was made of magnetron-sputtered constantan (Cu-Ni alloy), the second was a Ag-based screen-printed film. The length of each thermocouple arm was equal to 27 mm, and their width 0.3 mm. The distance between the arms was equal to 0.3 mm. In the first step, a pattern mask with thermocouples was designed and fabricated. Then, a constantan layer was magnetron sputtered over the whole substrate, and a photolithography process was used to prepare the first thermocouple arms. The second arms were screen-printed onto the substrate using a low-temperature silver paste (Heraeus C8829A or ElectroScience Laboratories ESL 599-E). To avoid oxidation of constantan, they were fired in a belt furnace in a nitrogen atmosphere at 550/450 °C peak firing temperature. Thermoelectric and electrical measurements were performed using the self-made measuring system. Two pyrometers included into the system were used for temperature measurement of hot and cold junctions. The estimated Seebeck coefficient, α was from the range 35 - 41 µV/K, whereas the total internal resistances R were between 250 and 3200 ohms, depending on magnetron sputtering time and kind of silver ink (the resistance of a single thermocouple was between 15.5 and 200 ohms).

16.
ACS Appl Mater Interfaces ; 9(38): 33250-33256, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28885819

RESUMEN

Magnetic nanostructures revealing exchange bias effect have gained a lot of interest in recent years due to their possible applications in modern devices with various functionalities. In this paper, we present our studies on patterned [CoO/Co/Pd]10 multilayer where ferromagnetic material is in a form of clusters, instead of being a continuous layer. The system was patterned using nanosphere lithography technique which resulted in creation of an assembly of well-ordered antidots or islands over a large substrate area. We found that the overall hysteresis loop of the films consists of hard and soft components. The hard component hysteresis loop exhibits a large exchange bias field up to -11 kOe. The patterning process causes a slight increase of the exchange field as the antidot radius rises. We also found that the material on edges of the structures gives rise to a soft unbiased magnetization component.

17.
ACS Appl Mater Interfaces ; 8(41): 28159-28165, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27648930

RESUMEN

Magnetic systems exhibiting an exchange bias effect are being considered as materials for applications in data storage devices, sensors, and biomedicine. Because the size of new magnetic devices is being continuously reduced, the influence of thermally induced instabilities in magnetic order has to be taken into account during their fabrication process. In this study, we show the influence of superparamagnetism on the magnetic properties of an exchange-biased [CoO/Co/Pd]10 multilayer. We find that the process of progressive thermal blocking of the superparamagnetic clusters causes an unusually fast rise of the exchange anisotropy field and coercivity and promotes easy-axis switching to the out-of-plane direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA