Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0292414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568898

RESUMEN

To mitigate the risk of radioactive isotope dissemination, the development of preventative and curative measures is of particular interest. For mass treatment, the developed solution must be easily administered, preferably orally, with effective, nontoxic decorporating properties against a wide range of radioactive isotopes. Currently, most orally administered chelation therapy products are quickly absorbed into the blood circulation, where chelation of the radioactive isotope is a race against time due to the short circulation half-life of the therapeutic. This report presents an alternative therapeutic approach by using a functionalized chitosan (chitosan@DOTAGA) with chelating properties that remains within the gastrointestinal tract and is eliminated in feces, that can protect against ingested radioactive isotopes. The polymer shows important in vitro chelation properties towards different metallic cations of importance, including (Cs(I), Ir(III), Th(IV), Tl(I), Sr(II), U(VI) and Co(II)), at different pH (from 1 to 7) representing the different environments in the gastrointestinal tract. An in vivo proof of concept is presented on a rodent model of uranium contamination following an oral administration of Chitosan@DOTAGA. The polymer partially prevents the accumulation of uranium within the kidneys (providing a protective effect) and completely prevents its uptake by the spleen.


Asunto(s)
Quitosano , Protectores contra Radiación , Uranio , Quitosano/química , Uranio/química , Protectores contra Radiación/farmacología , Polímeros , Quelantes/química
2.
Sci Rep ; 13(1): 9306, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291245

RESUMEN

Here, a comparative toxicity assessment of precursor carbon dots from coffee waste (cofCDs) obtained using green chemistry principles and Gd-doped nanohybrids (cofNHs) was performed using hematological, biochemical, histopathological assays in vivo (CD1 mice, intraperitoneal administration, 14 days), and neurochemical approach in vitro (rat cortex nerve terminals, synaptosomes). Serum biochemistry data revealed similar changes in cofCDs and cofNHs-treated groups, i.e. no changes in liver enzymes' activities and creatinine, but decreased urea and total protein values. Hematology data demonstrated increased lymphocytes and concomitantly decreased granulocytes in both groups, which could evidence inflammatory processes in the organism and was confirmed by liver histopathology; decreased red blood cell-associated parameters and platelet count, and increased mean platelet volume, which might indicate concerns with platelet maturation and was confirmed by spleen histopathology. So, relative safety of both cofCDs and cofNHs for kidney, liver and spleen was shown, whereas there were concerns about platelet maturation and erythropoiesis. In acute neurotoxicity study, cofCDs and cofNHs (0.01 mg/ml) did not affect the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminal preparations. Therefore, cofNHs demonstrated minimal changes in serum biochemistry and hematology assays, had no acute neurotoxicity signs, and can be considered as perspective biocompatible non-toxic theragnostic agent.


Asunto(s)
Café , Hematología , Ratas , Ratones , Animales , Carbono , Neurobiología , Hígado/patología
3.
Sci Rep ; 13(1): 2215, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750623

RESUMEN

Heavy metals present a threat to human health, even at minimal concentrations within the body. One source of exposure is due to the consumption of low-level contaminated foodstuff and water. Lead and cadmium have been shown to be absorbed by and accumulate within organs like the kidneys and liver, and they have also been associated to many diseases including cardiovascular disease and kidney dysfunction as well as developmental disorders and neurodegenerative diseases. Since this contamination of lead and cadmium is found worldwide, limiting the exposure is complicated and novel strategies are required to prevent the absorption and accumulation of these metals by forcing their elimination. In this study, a DOTAGA-functionalized chitosan polymer is evaluated for this preventative strategy. It shows promising results when orally administered in mice to force the elimination and negate the toxic effects of lead and cadmium found within foodstuff.


Asunto(s)
Quitosano , Metales Pesados , Humanos , Ratones , Animales , Cadmio/toxicidad , Metales Pesados/toxicidad , Quelantes , Riñón
4.
J Photochem Photobiol B ; 233: 112479, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660309

RESUMEN

An in vivo study of a photoswitchable cytotoxic peptide LMB040 has been undertaken on a chemically induced hepatocellular carcinoma model in immunocompetent rats. We analysed the pharmacokinetic profile of the less toxic photoform ("ring-closed" dithienylethene) of the compound in tumors, plasma, and healthy liver. Accordingly, the peptide can reach a tumor concentration sufficiently high to exert a cytotoxic effect upon photoconversion into the more active ("ring-open") photoform. Tissue morphology, histology, redox state of the liver, and hepatic biochemical parameters in blood serum were analysed upon treatment with (i) the less active photoform, (ii) the in vivo light-activated alternative photoform, and (iii) compared with a reference chemotherapeutic 5-fluorouracil. We found that application of the less toxic form followed by a delayed in vivo photoconversion into the more toxic ring-open form of LMB040 led to a higher overall survival of the animals, and signs of enhanced immune response were observed compared to the untreated animals.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Péptidos , Ratas
5.
Mol Cell Biochem ; 476(8): 3021-3035, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33792809

RESUMEN

An aberrant activity of growth factor receptors followed by excessive cell proliferation plays a significant role in pathogenesis of cholangitis. Therefore, inhibition of these processes could be a fruitful therapeutic strategy. The effects of multi-kinase inhibitor 1-(4-Cl-benzyl)-3-chloro-4-(CF3-phenylamino)-1H-pyrrole-2,5-dione (MI-1) on the hepatic and systemic manifestations of acute and chronic cholangitis in rats were addressed. MI-1 (2.7 mg/kg per day) was applied to male rats that experienced α-naphthylisothiocyanate-induced acute (3 days) or chronic (28 days) cholangitis. Liver autopsy samples, blood serum markers, and leukograms were studied. MI-1 localization in liver cells and its impact on viability of HepG2 (human hepatoma), HL60 (human leukemia), and NIH3T3 (normal murine fibroblasts) cell lines and lymphocytes of human peripheral blood (MTT, DNA fragmentation, DNA comet assays, Propidium Iodide staining) were assessed. Under both acute and chronic cholangitis, MI-1 substantially reduced liver injury, fibrosis, and inflammatory scores (by 46-86%) and normalized blood serum markers and leukograms. Moreover, these effects were preserved after a 28-day recovery period (without any treatment). MI-1 inhibited the HL60, HepG2 cells, and human lymphocytes viability (IC50 0.6, 9.5 and 8.3 µg/ml, respectively), while NIH3T3 cells were resistant to that. Additionally, HepG2 cells and lymphocytes being incubated with MI-1 demonstrated insignificant pro-apoptotic and pro-necrotic changes and DNA single-strand breaks, suggesting that MI-1 effects in liver might be partly caused by its cytotoxic action towards liver cells and lymphocytes. In conclusion, MI-1 attenuated the systemic inflammation and signs of acute and chronic cholangitis partly through cytotoxicity towards cells of hepatic and leukocytic origin.


Asunto(s)
Antiinflamatorios/farmacología , Colangitis/prevención & control , Inflamación/prevención & control , Linfocitos/efectos de los fármacos , Maleimidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Enfermedad Aguda , Animales , Antiinflamatorios/química , Colangitis/patología , Enfermedad Crónica , Células Hep G2 , Humanos , Inflamación/patología , Masculino , Ratones , Células 3T3 NIH , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Wistar
6.
Pharmaceutics ; 12(9)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842595

RESUMEN

Excessive production of reactive oxygen species is the main cause of hepatocellular carcinoma (HCC) initiation and progression. Water-soluble pristine C60 fullerene is a powerful and non-toxic antioxidant, therefore, its effect under rat HCC model and its possible mechanisms were aimed to be discovered. Studies on HepG2 cells (human HCC) demonstrated C60 fullerene ability to inhibit cell growth (IC50 = 108.2 µmol), to induce apoptosis, to downregulate glucose-6-phosphate dehydrogenase, to upregulate vimentin and p53 expression and to alter HepG2 redox state. If applied to animals experienced HCC in dose of 0.25 mg/kg per day starting at liver cirrhosis stage, C60 fullerene improved post-treatment survival similar to reference 5-fluorouracil (31 and 30 compared to 17 weeks) and inhibited metastasis unlike the latter. Furthermore, C60 fullerene substantially attenuated liver injury and fibrosis, decreased liver enzymes, and normalized bilirubin and redox markers (elevated by 1.7-7.7 times under HCC). Thus, C60 fullerene ability to inhibit HepG2 cell growth and HCC development and metastasis and to improve animal survival was concluded. C60 fullerene cytostatic action might be realized through apoptosis induction and glucose-6-phosphate dehydrogenase downregulation in addition to its antioxidant activity.

7.
Oxid Med Cell Longev ; 2020: 8061246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148657

RESUMEN

Liver cirrhosis is an outcome of a wide range of liver chronic diseases. It is attributed to oxidative stress; therefore, antioxidant usage could be a promising treatment of that. So, exploring the impact of effective free radical scavenger pristine C60 fullerenes on liver fibrosis and cirrhosis and their ability to interact with main growth factor receptors involved in liver fibrogenesis was aimed to be discovered. We used N-diethylnitrosamine/carbon tetrachloride-induced simulations of rat liver fibrosis (10 weeks) and cirrhosis (15 weeks). Pristine C60 fullerene aqueous colloid solution (C60FAS) was injected daily at a dose of 0.25 mg/kg throughout the experiment. Liver morphology and functional and redox states were assessed. C60 fullerenes' ability to interact with epidermal, vasoendothelial, platelet-derived, and fibroblast growth factor receptors (EGFR, VEGFR, PDGFR, and FGFR, respectively) was estimated by computational modeling. We observed that C60FAS reduced the severity of fibrosis in fibrotic rats (0.75 vs. 3.0 points according to Ishak score), attenuated the hepatocyte injury, normalized elevated blood serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and mitigated oxidative stress manifestation in liver tissue restoring its redox balance. When applied to cirrhotic animals, C60FAS reduced connective tissue deposition as well (2.4 vs. 5.4 points according to Ishak score), diminished ALP and LDH (by 16% and 61%), and normalized conjugated and nonconjugated bilirubin, restoring the liver function. Altered liver lipid and protein peroxides and glutathione peroxidase activity were also leveled. Within a computer simulation, it was shown that C60 fullerenes can block hinge prohibiting ATP binding for EGFR and FGFR and thus blocking associated signal pathways. This ability in addition to their antioxidant properties may contribute to C60 fullerene's antifibrotic action. Thus, C60FAS may have a substantial therapeutic potential as an inhibitor of liver fibrosis and cirrhosis.


Asunto(s)
Fibrosis/tratamiento farmacológico , Fulerenos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Animales , Fulerenos/farmacología , Humanos , Hígado/fisiopatología , Masculino , Ratas , Ratas Wistar
8.
Dig Dis Sci ; 65(1): 215-224, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31312992

RESUMEN

BACKGROUND: A significant role in pathogenesis of cholangitis is attributed to excessive reactive oxygen species production and oxidative stress. Therefore, antioxidants could be promising therapeutics. AIMS: The effects of powerful free radical scavenger C60 fullerene on hepatic and pancreatic manifestations of acute and chronic cholangitis in rats were aimed to be discovered. METHODS: Acute (AC, 3 days) and chronic (CC, 28 days) cholangitis models were simulated by single (AC) and 4 weekly (CC) α-naphthylisothiocyanate per os administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS, 0.15 mg/ml, size of aggregates 1.2-100 nm) was administered either per os or intraperitoneally at a dose of 0.5 mg/kg C60 fullerene daily (AC) and every other day (CC). Prednisolone was used as a reference. Liver and pancreas autopsies were analyzed, and blood serum biochemical markers were measured. Pan-cytokeratin expression in HepG2 cells was assessed after 48-h incubation with C60FAS. RESULTS: On AC, C60FAS normalized elevated bilirubin, alkaline phosphatase, and triglycerides, diminished fibrotic alterations in liver, and improved pancreas state when applied by both ways. Additionally, C60FAS per os significantly reduced the signs of inflammation in liver and pancreas. On CC, C60FAS also mitigated liver fibrosis and inflammation, improved pancreas state, and normalized alkaline phosphatase and triglycerides. The remedy effect of C60FAS was more expressed compared to that of prednisolone on both models. Furthermore, C60FAS inhibited pan-cytokeratin expression in HepG2 cells in a dose-dependent manner. CONCLUSION: Pristine C60 fullerene inhibits liver inflammation and fibrogenesis and partially improved liver and pancreas state under acute and chronic cholangitis.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Colangitis/tratamiento farmacológico , Fulerenos/farmacología , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , Páncreas/efectos de los fármacos , Enfermedades Pancreáticas/prevención & control , 1-Naftilisotiocianato , Animales , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colangitis/sangre , Colangitis/inducido químicamente , Colangitis/patología , Modelos Animales de Enfermedad , Depuradores de Radicales Libres/farmacología , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/sangre , Enfermedades Pancreáticas/inducido químicamente , Enfermedades Pancreáticas/patología , Prednisolona/farmacología , Ratas Wistar , Factores de Tiempo
9.
J Drug Target ; 28(5): 547-563, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31814456

RESUMEN

Pyrrole derivatives (PDs) chloro-1-(4-chlorobenzyl)-4-((3-(trifluoromethyl)phenyl)amino)-1H-pyrrole-2,5-dione (MI-1) and 5-amino-4-(1,3-benzothyazol-2-yn)-1-(3-methoxyphenyl)-1,2-dihydro-3H-pyrrole-3-one (D1) were synthesised as inhibitors of several protein kinases including EGFR and VEGFR. The aim of the study was to reveal the exact mechanisms of PDs' action EGFR and VEGFR are involved in. We observed, that both PDs could bind with EGFR and VEGFR and form stable complexes. PDs entered into electrostatic interactions with polar groups of phospholipid heads in cell membrane, and the power of interaction depended on the nature of PD radical substituents (greater for MI-1 and smaller for D1). Partial intercalation of MI-1 into the membrane hydrophobic zone also occurred. PDs concentrations induced apoptosis in malignant cells but normal ones had different sensitivity to those. MI-1 and D1 acted like antioxidants in inflamed colonic tissue, as evidenced by reduce of lipid and protein peroxidation products (by 43-67%) and increase of superoxide dismutase activity (by 40 and 58%) with restoring these values to control ones. MI-1 restored reduced haemoglobin and normalised elevated platelets and monocytes in settings of colorectal cancer, whereas D1 normalised only platelets. Thus, MI-1 and D1 could be used as competitive inhibitors of EGFR and VEGFR and antioxidants, which might contribute to realisation of their anti-inflammatory, proapoptotic and antitumor activity.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Pirroles/farmacología , Animales , Antioxidantes/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Hemoglobinas/metabolismo , Humanos , Masculino , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Neoplasias/metabolismo , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Superóxido Dismutasa/metabolismo
10.
Bioimpacts ; 9(4): 227-237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799159

RESUMEN

Introduction: Oxidative stress has been suggested as the main trigger and pathological mechanism of toxic liver injury. Effects of powerful free radical scavenger С60 fullerene on rat liver injury and liver cells (HepG2 line) were aimed to be discovered. Methods: Acute liver injury (ALI) was simulated by single acetaminophen (APAP, 1000 mg/kg) administration, on a chronic CLI, by 4 weekly APAP administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS; initial concentration 0.15 mg/mL) was administered per os or intraperitoneally at a dose of 0.5 mg/kg (ALI) or 0.25 mg/kg (CLI) daily for 2 or 28 days, respectively, after first APAP dose. Animals were sacrificed at 24th hour after the last dose. Biochemical markers of blood serum and liver autopsies were analyzed. EGFR expression in HepG2 cells after 48-hour incubation with C60FAS was assessed. Results: Increase of serum conjugated and unconjugated bilirubin (up to 1.4-3.7 times), ALT (by 31-37%), and AST (by 18%) in non-treated ALI and CLI rats were observed, suggesting the hepatitis (confirmed by histological analysis). Liver morphological state (ALI, CLI), ALT (ALI and CLI), bilirubin (CLI), α-amylase, and creatinine (ALI) were normalized with C60FAS administration in both ways, which may indicate its protective impact on liver. However, unconjugated bilirubin sharply increased in ALI animals receiving C60FAS (up to 12 times compared to control), suggesting the augmentation of bilirubin metabolism. Furthermore, C60FAS inhibited EGFR expression in HepG2 cells in a dose-dependent manner. Conclusion: C60FAS could partially correct acute and chronic toxic liver injury, however, it could not normalize bilirubin metabolism after acute exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...