Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 612(7940): 534-539, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477528

RESUMEN

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Asunto(s)
Plasmodium falciparum , Esporozoítos , Animales , Humanos , Ratones , Culicidae/parasitología , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/química , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/patogenicidad , Hepatocitos/parasitología , Hígado/parasitología , Proteína 1 de Superficie de Merozoito , Eritrocitos/parasitología , Técnicas In Vitro
2.
Front Immunol ; 13: 851028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242146

RESUMEN

Ionizing radiation (UV, X-ray and É£) administered at an appropriate dose to pathogenic organisms can prevent replication while preserving metabolic activity. We have established the GMP process for attenuation by ionizing radiation of the Plasmodium falciparum (Pf) sporozoites (SPZ) in Sanaria® PfSPZ Vaccine, a protective vaccine against malaria. Mosquitoes raised and infected aseptically with Pf were transferred into infected mosquito transport containers (IMTC) and É£-irradiated using a 60Co source. PfSPZ were then extracted, purified, vialed, and cryopreserved. To establish the appropriate radiation conditions, the irradiation field inside the IMTCs was mapped using radiochromic film and alanine transfer dosimeters. Dosimeters were irradiated for times calculated to provide 120-170 Gy at the minimum dose location inside the IMTC and regression analysis was used to determine the time required to achieve a lower 95% confidence interval for 150 Gy. A formula incorporating the half-life of 60Co was then used to construct tables of irradiation times for each calendar day. From the mapping studies, formulae were derived to estimate the minimum and maximum doses of irradiation received inside the IMTC from a reference dosimeter mounted on the outside wall. For PfSPZ Vaccine manufacture a dose of 150 Gy was targeted for each irradiation event, a dose known to completely attenuate PfSPZ. The reference dosimeters were processed by the National Institute of Standards and Technology. There have been 587 irradiation events to produce PfSPZ Vaccine during 13 years which generated multiple lots released for pre-clinical studies and clinical trials. The estimated doses at the minimum dose location (mean 154.3 ± 1.77 Gy; range 150.0-159.3 Gy), and maximum dose location (mean 166.3 ± 3.65 Gy, range 155.7 to 175.3 Gy), in IMTCs were normally distributed. Overall dose uniformity was 1.078 ± 0.012. There was no siginifcant change in measured dose over 13 years. As of January 2022, 21 clinical trials of PfSPZ Vaccine have been conducted, with 1,740 volunteers aged 5 months to 61 years receiving 5,648 doses of PfSPZ Vaccine totalling >5.3 billion PfSPZ administered. There have been no breakthrough infections, confirming the consistency and robustness of the radiation attenuation process.


Asunto(s)
Culicidae , Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Humanos , Malaria Falciparum/prevención & control , Plasmodium falciparum , Esporozoítos , Vacunas Atenuadas , Vacunología
3.
Sci Rep ; 12(1): 43, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997079

RESUMEN

The ability to cryopreserve mosquitoes would revolutionize work on these vectors of major human infectious diseases by conserving stocks, new isolates, lab-bred strains, and transgenic lines that currently require continuous life cycle maintenance. Efforts over several decades to develop a method for cryopreservation have, until now, been fruitless: we describe here a method for the cryopreservation of Anopheles stephensi embryos yielding hatch rates of ~ 25%, stable for > 5 years. Hatched larvae developed into fertile, fecund adults and blood-fed females, produced fully viable second generation eggs, that could be infected with Plasmodium falciparum at high intensities. The key components of the cryopreservation method are: embryos at 15-30 min post oviposition, two incubation steps in 100% deuterated methanol at - 7 °C and - 14.5 °C, and rapid cooling. Eggs are recovered by rapid warming with concomitant dilution of cryoprotectant. Eggs of genetically modified A. stephensi and of A. gambiae were also successfully cryopreserved. This enabling methodology will allow long-term conservation of mosquitoes as well as acceleration of genetic studies and facilitation of mass storage of anopheline mosquitoes for release programs.


Asunto(s)
Anopheles/embriología , Criopreservación/métodos , Embrión no Mamífero/embriología , Animales , Anopheles/parasitología , Crioprotectores , Larva/crecimiento & desarrollo , Oviposición , Plasmodium falciparum/parasitología
4.
PLoS Pathog ; 17(11): e1009770, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784388

RESUMEN

PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.


Asunto(s)
Anopheles/fisiología , Sistemas CRISPR-Cas , Proteínas de Insectos/metabolismo , Malaria/parasitología , Mosquitos Vectores/crecimiento & desarrollo , Plasmodium/crecimiento & desarrollo , Reproducción , Animales , Bacterias/crecimiento & desarrollo , Sistema Digestivo/microbiología , Femenino , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Masculino , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología
5.
Malar J ; 20(1): 284, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174879

RESUMEN

BACKGROUND: Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS: Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS: LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS: Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.


Asunto(s)
Anopheles/parasitología , Proteínas de Insectos/genética , Plasmodium falciparum/fisiología , Interferencia de ARN , Animales , Anopheles/genética , Femenino , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/metabolismo , Glándulas Salivales/parasitología , Esporozoítos/fisiología
6.
J Infect Dis ; 220(12): 1962-1966, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31419294

RESUMEN

Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates. We conducted a double-blind, randomized, dose-escalation study to assess the infectivity of the 7G8 clone of Pf (PfSPZ Challenge [7G8]). Results showed dose-dependent infectivity from 43% for 8 × 102 PfSPZ to 100% for 4.8 × 103 PfSPZ. PfSPZ Challenge (7G8) will allow for more complete assessment by CHMI of antimalarial vaccines and drugs.


Asunto(s)
Relación Dosis-Respuesta Inmunológica , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Esporozoítos/inmunología , Administración Intravenosa , Adulto , Femenino , Humanos , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/inmunología , Masculino , Vacunación
7.
Malar J ; 18(1): 2, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602380

RESUMEN

BACKGROUND: Saglin, a 100 kDa protein composed of two 50 kDa homodimers, is present in the salivary glands of Anopheles gambiae and has been considered an essential receptor for sporozoites (SPZ) of Plasmodium berghei and Plasmodium falciparum (Pf), allowing SPZ to recognize, bind to, and infect mosquito salivary glands. Spatial and temporal patterns of Saglin expression reported here, however, suggest that this model does not fully describe the Saglin-SPZ interaction. RESULTS: Saglin protein was detected by indirect immunofluorescence microscopy only in the medial and proximal-lateral lobes, but not in the distal-lateral lobes, of the salivary glands of An. gambiae; the pattern of expression was independent of mosquito age or physiological state. These results were confirmed by steady-state Saglin transcript and protein expression using qRT-PCR and Western-blot analysis, respectively. Saglin was localized to the basal surface of the cells of the medial lobes and was undetectable elsewhere (intracellularly, on the lateral or apical membranes, the cells' secretory vacuoles, or in the salivary duct). In the cells of the proximal lateral lobes of the salivary glands, Saglin was distinctly intracellular and was not localized to any of the cell surfaces. Transgenic Anopheles stephensi were produced that expressed An. gambiae Saglin in the distal lateral lobes of the salivary gland. Additional Saglin expression did not enhance infection by PfSPZ compared to non-transgenic siblings fed on the same gametocyte-containing blood meal. CONCLUSIONS: The absence of Saglin in the distal lateral lobes of the salivary glands, a primary destination for SPZ, suggests Saglin is not an essential receptor for Plasmodium SPZ. The lack of any correlation between increased Saglin expression in the distal lateral lobes of the salivary glands of transgenic An. stephensi and PfSPZ infection is also consistent with Saglin not being an essential salivary gland receptor for Plasmodium SPZ.


Asunto(s)
Anopheles/parasitología , Proteínas de Insectos/metabolismo , Plasmodium falciparum/fisiología , Glándulas Salivales/metabolismo , Animales , Femenino , Proteínas de Insectos/genética , Glándulas Salivales/parasitología , Esporozoítos/fisiología
8.
Proc Natl Acad Sci U S A ; 114(10): 2711-2716, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223498

RESUMEN

A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Vacunas Atenuadas/administración & dosificación , Adolescente , Adulto , Femenino , Voluntarios Sanos , Humanos , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/patogenicidad , Esporozoítos/inmunología , Esporozoítos/patogenicidad , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/parasitología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología
9.
Nature ; 542(7642): 445-449, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28199305

RESUMEN

A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Vacunas Atenuadas/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Cloroquina/uso terapéutico , Método Doble Ciego , Voluntarios Sanos , Humanos , Memoria Inmunológica/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Persona de Mediana Edad , Plasmodium falciparum/clasificación , Esporozoítos/inmunología , Linfocitos T/inmunología , Factores de Tiempo , Vacunas Atenuadas/administración & dosificación , Adulto Joven
10.
JCI Insight ; 2(1): e89154, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28097230

RESUMEN

BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [-35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research Center's Advanced Medical Development Program.


Asunto(s)
Malaria Falciparum/terapia , Plasmodium falciparum/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Vacunas Atenuadas/administración & dosificación , Administración Intravenosa , Adulto , Femenino , Humanos , Malaria Falciparum/prevención & control , Masculino , Plasmodium falciparum/genética , Esporozoítos/genética , Linfocitos T/inmunología , Vacunas Atenuadas/uso terapéutico , Secuenciación Completa del Genoma/métodos
12.
Nat Med ; 22(6): 614-23, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27158907

RESUMEN

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunogenicidad Vacunal/inmunología , Hígado/inmunología , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Administración Intravenosa , Adolescente , Adulto , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Inmunoglobulina G/inmunología , Interferón gamma/inmunología , Hígado/citología , Macaca mulatta , Vacunas contra la Malaria/inmunología , Masculino , Persona de Mediana Edad , Parasitemia/inmunología , Esporozoítos/inmunología , Linfocitos T/inmunología , Adulto Joven
13.
Malar J ; 14: 150, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25890243

RESUMEN

BACKGROUND: A vaccine that interrupts malaria transmission (VIMT) would be a valuable tool for malaria control and elimination. One VIMT approach is to identify sexual erythrocytic and mosquito stage antigens of the malaria parasite that induce immune responses targeted at disrupting parasite development in the mosquito. The standard Plasmodium falciparum membrane-feeding assay (SMFA) is used to assess transmission-blocking activity (TBA) of antibodies against candidate immunogens and of drugs targeting the mosquito stages. To develop its P. falciparum sporozoite (SPZ) products, Sanaria has industrialized the production of P. falciparum-infected Anopheles stephensi mosquitoes, incorporating quantitative analyses of oocyst and P. falciparum SPZ infections as part of the manufacturing process. METHODS: These capabilities were exploited to develop a robust, reliable, consistent SMFA that was used to assess 188 serum samples from animals immunized with the candidate vaccine immunogen, Pfs25, targeting P. falciparum mosquito stages. Seventy-four independent SMFAs were performed. Infection intensity (number of oocysts/mosquito) and infection prevalence (percentage of mosquitoes infected with oocysts) were compared between mosquitoes fed cultured gametocytes plus normal human O(+) serum (negative control), anti-Pfs25 polyclonal antisera (MRA39 or MRA38, at a final dilution in the blood meal of 1:54 as positive control), and test sera from animals immunized with Pfs25 (at a final dilution in the blood meal of 1:9). RESULTS: SMFA negative controls consistently yielded high infection intensity (mean = 46.1 oocysts/midgut, range of positives 3.7-135.6) and infection prevalence (mean = 94.2%, range 71.4-100.0) and in positive controls, infection intensity was reduced by 81.6% (anti-Pfs25 MRA39) and 97.0% (anti-Pfs25 MRA38), and infection prevalence was reduced by 12.9 and 63.5%, respectively. A range of TBAs was detected among the 188 test samples assayed in duplicate. Consistent administration of infectious gametocytes to mosquitoes within and between assays was achieved, and the TBA of anti-Pfs25 control antibodies was highly reproducible. CONCLUSIONS: These results demonstrate a robust capacity to perform the SMFA in a medium-to-high throughput format, suitable for assessing large numbers of experimental samples of candidate antibodies or drugs.


Asunto(s)
Anopheles/fisiología , Antimaláricos/farmacología , Bioensayo/métodos , Vacunas contra la Malaria/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/inmunología , Animales , Conducta Alimentaria , Femenino , Membranas/fisiología
14.
Eukaryot Cell ; 13(5): 550-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24297444

RESUMEN

The prodigious rate at which malaria parasites proliferate during asexual blood-stage replication, midgut sporozoite production, and intrahepatic development creates a substantial requirement for essential nutrients, including fatty acids that likely are necessary for parasite membrane formation. Plasmodium parasites obtain fatty acids either by scavenging from the vertebrate host and mosquito vector or by producing fatty acids de novo via the type two fatty acid biosynthesis pathway (FAS-II). Here, we study the FAS-II pathway in Plasmodium falciparum, the species responsible for the most lethal form of human malaria. Using antibodies, we find that the FAS-II enzyme FabI is expressed in mosquito midgut oocysts and sporozoites as well as liver-stage parasites but not during the blood stages. As expected, FabI colocalizes with the apicoplast-targeted acyl carrier protein, indicating that FabI functions in the apicoplast. We further analyze the FAS-II pathway in Plasmodium falciparum by assessing the functional consequences of deleting fabI and fabB/F. Targeted deletion or disruption of these genes in P. falciparum did not affect asexual blood-stage replication or the generation of midgut oocysts; however, subsequent sporozoite development was abolished. We conclude that the P. falciparum FAS-II pathway is essential for sporozoite development within the midgut oocyst. These findings reveal an important distinction from the rodent Plasmodium parasites P. berghei and P. yoelii, where the FAS-II pathway is known to be required for normal parasite progression through the liver stage but is not required for oocyst development in the Anopheles mosquito midgut.


Asunto(s)
Anopheles/parasitología , Ácidos Grasos/biosíntesis , Insectos Vectores/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/metabolismo , Animales , Tracto Gastrointestinal/parasitología , Humanos , Malaria Falciparum/parasitología , Oocistos/crecimiento & desarrollo , Oocistos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/crecimiento & desarrollo
15.
Science ; 341(6152): 1359-65, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23929949

RESUMEN

Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Administración Intravenosa , Adulto , Animales , Citocinas/inmunología , Femenino , Humanos , Inmunidad Celular , Vacunas contra la Malaria/efectos adversos , Masculino , Ratones , Esporozoítos/inmunología , Linfocitos T/inmunología , Vacunación/efectos adversos , Vacunación/métodos
16.
PLoS One ; 8(7): e68969, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874828

RESUMEN

UNLABELLED: Controlled human malaria infection (CHMI) is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf) sporozoite (SPZ)-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP) was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%); 12 of 19 (63%) on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8). The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44). Quantitative polymerase chain reaction (qPCR) detected parasites an average of 79.8 hours (range 43.8-116.7) before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200). Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00744133 NCT00744133.


Asunto(s)
Anopheles/parasitología , Malaria Falciparum/transmisión , Plasmodium falciparum/patogenicidad , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Adulto Joven
17.
PLoS One ; 8(5): e62937, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658788

RESUMEN

Successful development of Plasmodium in the mosquito is essential for the transmission of malaria. A major bottleneck in parasite numbers occurs during midgut invasion, partly as a consequence of the complex interactions between the endogenous microbiota and the mosquito immune response. We previously identified SRPN6 as an immune component which restricts Plasmodium berghei development in the mosquito. Here we demonstrate that SRPN6 is differentially activated by bacteria in Anopheles stephensi, but only when bacteria exposure occurs on the lumenal surface of the midgut epithelium. Our data indicate that AsSRPN6 is strongly induced following exposure to Enterobacter cloacae, a common component of the mosquito midgut microbiota. We conclude that AsSRPN6 is a vital component of the E. cloacae-mediated immune response that restricts Plasmodium development in the mosquito An. stephensi.


Asunto(s)
Anopheles/inmunología , Enterobacter cloacae/fisiología , Proteínas de Insectos/inmunología , Plasmodium berghei/fisiología , Serpinas/inmunología , Simbiosis/inmunología , Animales , Anopheles/genética , Anopheles/microbiología , Anopheles/parasitología , Regulación de la Expresión Génica/inmunología , Genes Reporteros , Proteínas Fluorescentes Verdes , Interacciones Huésped-Patógeno , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/parasitología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Serpinas/genética , Transducción de Señal
18.
PLoS Pathog ; 8(10): e1002965, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23093936

RESUMEN

The mosquito is the obligate vector for malaria transmission. To complete its development within the mosquito, the malaria parasite Plasmodium must overcome the protective action of the mosquito innate immune system. Here we report on the involvement of the Anopheles gambiae orthologue of a conserved component of the vertebrate immune system, LPS-induced TNFα transcription factor (LITAF), and its role in mosquito anti-Plasmodium immunity. An. gambiae LITAF-like 3 (LL3) expression is up-regulated in response to midgut invasion by both rodent and human malaria parasites. Silencing of LL3 expression greatly increases parasite survival, indicating that LL3 is part of an anti-Plasmodium defense mechanism. Electrophoretic mobility shift assays identified specific LL3 DNA-binding motifs within the promoter of SRPN6, a gene that also mediates mosquito defense against Plasmodium. Further experiments indicated that these motifs play a direct role in LL3 regulation of SRPN6 expression. We conclude that LL3 is a transcription factor capable of modulating SRPN6 expression as part of the mosquito anti-Plasmodium immune response.


Asunto(s)
Anopheles/inmunología , Interacciones Huésped-Parásitos , Proteínas de Insectos/metabolismo , Insectos Vectores/inmunología , Plasmodium/inmunología , Factores de Transcripción/metabolismo , Animales , Anopheles/genética , Anopheles/parasitología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Insectos/genética , Insectos Vectores/parasitología , Malaria/transmisión , Plasmodium/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción/genética
19.
Proc Natl Acad Sci U S A ; 108(47): E1214-23, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22042867

RESUMEN

Clinical studies and mathematical models predict that, to achieve malaria elimination, combination therapies will need to incorporate drugs that block the transmission of Plasmodium falciparum sexual stage parasites to mosquito vectors. Efforts to measure the activity of existing antimalarials on intraerythrocytic sexual stage gametocytes and identify transmission-blocking agents have, until now, been hindered by a lack of quantitative assays. Here, we report an experimental system using P. falciparum lines that stably express gametocyte-specific GFP-luciferase reporters, which enable the assessment of dose- and time-dependent drug action on gametocyte maturation and transmission. These studies reveal activity of the first-line antimalarial dihydroartemisinin and the partner drugs lumefantrine and pyronaridine against early gametocyte stages, along with moderate inhibition of mature gametocyte transmission to Anopheles mosquitoes. The other partner agents monodesethyl-amodiaquine and piperaquine showed activity only against immature gametocytes. Our data also identify methylene blue as a potent inhibitor of gametocyte development across all stages. This thiazine dye almost fully abolishes P. falciparum transmission to mosquitoes at concentrations readily achievable in humans, highlighting the potential of this chemical class to reduce the spread of malaria.


Asunto(s)
Anopheles/microbiología , Antimaláricos/farmacología , Malaria/transmisión , Azul de Metileno/farmacología , Plasmodium falciparum/fisiología , Desarrollo Sexual/fisiología , Amodiaquina/análogos & derivados , Animales , Artemisininas , Southern Blotting , Relación Dosis-Respuesta a Droga , Etanolaminas , Fluorenos , Vectores Genéticos , Células Germinativas de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes , Luciferasas , Lumefantrina , Naftiridinas , Plasmodium falciparum/efectos de los fármacos , Quinolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...