Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 185(2): 345-360.e28, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063075

RESUMEN

We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.


Asunto(s)
Células/citología , Simulación por Computador , Adenosina Trifosfato/metabolismo , Ciclo Celular/genética , Proliferación Celular/genética , Células/metabolismo , Replicación del ADN/genética , Regulación de la Expresión Génica , Imagenología Tridimensional , Cinética , Lípidos/química , Redes y Vías Metabólicas , Metaboloma , Anotación de Secuencia Molecular , Nucleótidos/metabolismo , Termodinámica , Factores de Tiempo
2.
Elife ; 82019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30657448

RESUMEN

JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, Mycoplasma mycoides capri, we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.59. The genes in the reconstruction have a high in vivo essentiality or quasi-essentiality of 92% (68% essential), compared to 79% in silico essentiality. This coherent model of the minimal metabolism in JCVI-syn3A at the same time also points toward specific open questions regarding the minimal genome of JCVI-syn3A, which still contains many genes of generic or completely unclear function. In particular, the model, its comparison to in vivo essentiality and proteomics data yield specific hypotheses on gene functions and metabolic capabilities; and provide suggestions for several further gene removals. In this way, the model and its accompanying data guide future investigations of the minimal cell. Finally, the identification of 30 essential genes with unclear function will motivate the search for new biological mechanisms beyond metabolism.


One way that researchers can test whether they understand a biological system is to see if they can accurately recreate it as a computer model. The more they learn about living things, the more the researchers can improve their models and the closer the models become to simulating the original. In this approach, it is best to start by trying to model a simple system. Biologists have previously succeeded in creating 'minimal bacterial cells'. These synthetic cells contain fewer genes than almost all other living things and they are believed to be among the simplest possible forms of life that can grow on their own. The minimal cells can produce all the chemicals that they need to survive ­ in other words, they have a metabolism. Accurately recreating one of these cells in a computer is a key first step towards simulating a complete living system. Breuer et al. have developed a computer model to simulate the network of the biochemical reactions going on inside a minimal cell with just 493 genes. By altering the parameters of their model and comparing the results to experimental data, Breuer et al. explored the accuracy of their model. Overall, the model reproduces experimental results, but it is not yet perfect. The differences between the model and the experiments suggest new questions and tests that could advance our understanding of biology. In particular, Breuer et al. identified 30 genes that are essential for life in these cells but that currently have no known purpose. Continuing to develop and expand models like these to reproduce more complex living systems provides a tool to test current knowledge of biology. These models may become so advanced that they could predict how living things will respond to changing situations. This would allow scientists to test ideas sooner and make much faster progress in understanding life on Earth. Ultimately, these models could one day help to accelerate medical and industrial processes to save lives and enhance productivity.


Asunto(s)
Genes Esenciales , Genoma Bacteriano , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Adenosina Trifosfato/química , Simulación por Computador , Elementos Transponibles de ADN , Escherichia coli , Ácido Fólico/metabolismo , Cinética , Sustancias Macromoleculares , Mutagénesis , Proteómica
3.
Rep Prog Phys ; 81(5): 052601, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29424367

RESUMEN

The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a 'minimal cell'. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.


Asunto(s)
Células , Modelos Biológicos , Animales , Células/citología , Células/metabolismo , Replicación del ADN , Humanos , Biosíntesis de Proteínas , Procesos Estocásticos , Transcripción Genética
4.
IET Syst Biol ; 12(4): 170-176, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33451183

RESUMEN

It is well known that stochasticity in gene expression is an important source of noise that can have profound effects on the fate of a living cell. In the galactose genetic switch in yeast, the unbinding of a transcription repressor is induced by high concentrations of sugar particles activating gene expression of sugar transporters. This response results in high propensity for all reactions involving interactions with the metabolite. The reactions for gene expression, feedback loops and transport are typically described by chemical master equations (CME). Sampling the CME using the stochastic simulation algorithm (SSA) results in large computational costs as each reaction event is evaluated explicitly. To improve the computational efficiency of cell simulations involving high particle number systems, the authors have implemented a hybrid stochastic-deterministic (CME-ODE) method into the publically available, GPU-based lattice microbes (LM) software suite and its python interface pyLM. LM and pyLM provide a convenient way to simulate complex cellular systems and interface with high-performance RDME/CME/ODE solvers. As a test of the implementation, the authors apply the hybrid CME-ODE method to the galactose switch in Saccharomyces cerevisiae, gaining a 10-50× speedup while yielding protein distributions and species traces similar to the pure SSA CME.

5.
J Phys Chem B ; 121(15): 3871-3881, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28291359

RESUMEN

Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the simulation of complex biochemical networks over cell cycle time scales using data taken from -omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived from cryo-ET data, we have the opportunity to imbue these highly detailed structural data-frozen in time-with realistic biochemical dynamics and investigate how cell structure affects the behavior of the embedded chemical reaction network. Here we present two examples to illustrate the challenges and techniques involved in integrating structural data into stochastic simulations. First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation geometry through which we study the effects of cellular substructure on the stochastic dynamics of gene repression. These simple chemical models allow us to illustrate how to build whole-cell simulations using cryo-ET derived geometry and the challenges involved in such a process.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Simulación de Dinámica Molecular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura , Células HeLa , Humanos , Procesos Estocásticos
6.
Biopolymers ; 105(10): 735-751, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27294303

RESUMEN

Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016.


Asunto(s)
División Celular/fisiología , Replicación del ADN/fisiología , ADN Bacteriano/biosíntesis , Escherichia coli/metabolismo , Modelos Biológicos , Ribosomas/metabolismo
7.
Biophys J ; 109(6): 1117-35, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26333594

RESUMEN

Central to all life is the assembly of the ribosome: a coordinated process involving the hierarchical association of ribosomal proteins to the RNAs forming the small and large ribosomal subunits. The process is further complicated by effects arising from the intracellular heterogeneous environment and the location of ribosomal operons within the cell. We provide a simplified model of ribosome biogenesis in slow-growing Escherichia coli. Kinetic models of in vitro small-subunit reconstitution at the level of individual protein/ribosomal RNA interactions are developed for two temperature regimes. The model at low temperatures predicts the existence of a novel 5'→3'→central assembly pathway, which we investigate further using molecular dynamics. The high-temperature assembly network is incorporated into a model of in vivo ribosome biogenesis in slow-growing E. coli. The model, described in terms of reaction-diffusion master equations, contains 1336 reactions and 251 species that dynamically couple transcription and translation to ribosome assembly. We use the Lattice Microbes software package to simulate the stochastic production of mRNA, proteins, and ribosome intermediates over a full cell cycle of 120 min. The whole-cell model captures the correct growth rate of ribosomes, predicts the localization of early assembly intermediates to the nucleoid region, and reproduces the known assembly timescales for the small subunit with no modifications made to the embedded in vitro assembly network.


Asunto(s)
Modelos Biológicos , Biogénesis de Organelos , Ribosomas/metabolismo , Frío , Simulación por Computador , Difusión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Calor , Cinética , ARN Mensajero/metabolismo , Programas Informáticos , Procesos Estocásticos
8.
Phys Biol ; 10(2): 026002, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23406725

RESUMEN

Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.


Asunto(s)
Simulación por Computador , ADN Bacteriano/genética , Escherichia coli/genética , Operón Lac , Represoras Lac/genética , Modelos Genéticos , Algoritmos , ADN Bacteriano/química , Escherichia coli/química , Conformación de Ácido Nucleico , ARN Mensajero/genética , Procesos Estocásticos
9.
Biophys J ; 100(5): 1344-52, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21354408

RESUMEN

Speed and processivity of replicative DNA polymerases can be enhanced via coupling to a sliding clamp. Due to the closed ring shape of the clamp, a clamp loader protein, belonging to the AAA+ class of ATPases, needs to open the ring-shaped clamp before loading it to DNA. Here, we developed real-time fluorescence assays to study the clamp (PCNA) and the clamp loader (RFC) from the mesophilic archaeon Methanosarcina acetivorans. Unexpectedly, we discovered that RFC can assemble a PCNA ring from monomers in solution. A motion-based DNA polymerization assay showed that the PCNA assembled by RFC is functional. This PCNA assembly activity required the ATP-bound conformation of RFC. Our work demonstrates a reverse-chaperoning activity for an AAA+ protein that can act as a template for the assembly of another protein complex.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanosarcina , Chaperonas Moleculares/metabolismo , Proteína de Replicación C/metabolismo , Adenosina Trifosfato/metabolismo , ADN/química , ADN/metabolismo , Cinética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA