Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Clin Ther ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39294041

RESUMEN

PURPOSE: Sandoz biosimilar denosumab (GP2411 [SDZ-deno]; Jubbonti/Wyost) is approved by the US FDA, EMA and Health Canada for all indications of reference denosumab (REF-deno; Prolia/Xgeva), a fully human IgG2κ monoclonal antibody that binds with high affinity and specificity to receptor activator of nuclear factor kappa-B ligand (RANKL). Denosumab blocks RANKL, preventing bone resorption and loss of bone density/architecture in conditions characterized by excessive bone loss such as osteoporosis in postmenopausal women and metastatic bone disease, among others. METHODS: This narrative review summarizes the totality of evidence (ToE) for SDZ-deno that supported its approval as Jubbonti/Wyost in the EU and US. FINDINGS: Analytical evaluation indicated that SDZ-deno has high purity and structural homology with REF-deno. SDZ-deno also demonstrated similar binding affinities, size and charge variants, and disulfide isoforms to REF-deno, and did not trigger clinically meaningful antibody-dependent cellular cytotoxicity. In clinical evaluation, SDZ-deno was similar to REF-deno in pharmacokinetics (PK) and pharmacodynamics (PD) in a 39-week Phase I study in 502 healthy male participants, and to REF-deno in a 72-week Phase III study in 527 postmenopausal women with osteoporosis. In both studies, the 90% and 95% confidence intervals (for PK and PD endpoints, respectively) of the geometric mean ratios for AUCinf, Cmax (and AUClast in the Phase I study; PK endpoints), and area under the effect versus time curve of percent change from baseline in serum carboxy-terminal crosslinked telopeptide of type I collagen (PD endpoint), were fully contained within the prespecified equivalence margins (0.80, 1.25). The Phase III study also demonstrated SDZ-deno is similar in efficacy to REF-deno in postmenopausal women with osteoporosis, as the difference in percent change from baseline in lumbar spine bone mineral density at week 52 between REF-deno and SDZ-deno was fully contained within the prespecified equivalence margins (-1.45, 1.45). SDZ-deno was well tolerated in both studies. As the ToE has established biosimilarity of SDZ-deno and REF-deno, extrapolation to all indications is justified based on the common mechanism of action and the comparable PK, safety, and immunogenicity across all indications. IMPLICATIONS: The ToE for SDZ-deno suggests it will be an effective biosimilar to REF-deno, and its lower unit price is anticipated to increase the number of appropriate patients who will benefit.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39243386

RESUMEN

CONTEXT: SB16 is a proposed biosimilar to reference denosumab (DEN; brand name: Prolia). OBJECTIVE: This phase 3 randomized, double-blind, multicenter study evaluated the biosimilarity of SB16 to DEN in women with postmenopausal osteoporosis (PMO; NCT04664959). DESIGN: The study included 457 PMO patients who had a lumbar spine or total hip T-score between -2.5 and -4. Patients were randomized in a 1:1 ratio to receive either 60 mg of SB16 or DEN subcutaneously at Month 0 and Month 6. At Month 12, patients were re-randomized to continue with the assigned treatment or switch from DEN to SB16 up to Month 18. This report includes results up to Month 12. METHODS: The primary endpoint was the percent change from baseline in lumbar spine bone mineral density (BMD) at Month 12. Secondary endpoints including the percent change from baseline in BMD of the lumbar spine (except for Month 12), total hip and femoral neck; pharmacokinetic, pharmacodynamic (serum C-telopeptide of type I collagen [CTX] and procollagen type I N-terminal propeptide [P1NP]), safety, and immunogenicity profiles were measured up to Month 12. RESULTS: The least-squares mean differences in percent change from baseline in lumbar spine BMD at Month 12 were 0.33% (90% confidence interval [CI]: -0.25, 0.91) in the full analysis set and 0.39% (95% CI: -0.36, 1.13) in the per-protocol set; both within the pre-defined equivalence margin. The secondary endpoints were comparable between the two treatment groups. CONCLUSION: The reported efficacy, PK, PD, safety, and immunogenicity data support the biosimilarity of SB16 to DEN.

3.
Nutrients ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275206

RESUMEN

High dose bolus cholecalciferol supplementation has been associated with falls and fracture, and this does not appear to be due to hypercalcaemia. The primary aim of this study was to determine the change in free vitamin D and metabolites after high dose bolus supplementation. This was a single centre, double-blinded, randomised, controlled trial of three different oral bolus doses of vitamin D3 (50,000 IU, 150,000 IU, and 500,000 IU) in otherwise healthy, vitamin D deficient (total 25-hydroxylated vitamin 25(OH)D < 30 nmol/L) postmenopausal women. Thirty-three women were randomized to one of the three treatment groups. Twenty-seven vitamin D sufficient (25(OH)D > 50 nmol/L) postmenopausal women were recruited as a concurrent control group. Participants attended five study visits over three months. We measured total 25(OH)D3 and free 25(OH)D, total and free 1,25(OH)2D, parathyroid hormone, fibroblast-growth factor-23, serum calcium, ionised calcium, urinary calcium excretion, and bone turnover markers (procollagen I N-propeptide (PINP), serum C-telopeptides of type I collagen (CTX-I) and Osteocalcin (OC)). We assessed muscle strength and function with grip strength and a short physical performance battery. Postural blood pressure and aldosterone:renin ratio (ARR) was also measured. Total 25(OH)D3 and free 25(OH)D increased in response to dose, and there were proportionate increases in total and free metabolites. Treatment did not affect serum calcium, postural blood pressure, ARR, or physical function. Bone turnover markers increased transiently one week after administration of 500,000 IU. High dose bolus cholecalciferol supplementation does not cause disproportionate increases in free vitamin D or metabolites. We did not identify any effect on blood pressure regulation or physical function that would explain increased falls after high dose treatment. A transient increase in bone turnover markers one week after a 500,000 IU bolus suggests that very high doses can have acute effects on bone metabolism, but the clinical significance of this transient increase is uncertain.


Asunto(s)
Biomarcadores , Remodelación Ósea , Colecalciferol , Suplementos Dietéticos , Deficiencia de Vitamina D , Vitamina D , Humanos , Femenino , Colecalciferol/administración & dosificación , Remodelación Ósea/efectos de los fármacos , Biomarcadores/sangre , Biomarcadores/orina , Vitamina D/análogos & derivados , Vitamina D/sangre , Vitamina D/administración & dosificación , Persona de Mediana Edad , Método Doble Ciego , Anciano , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/sangre , Posmenopausia , Calcio/sangre , Hormona Paratiroidea/sangre , Factor-23 de Crecimiento de Fibroblastos , Relación Dosis-Respuesta a Droga
4.
J Bone Miner Res ; 39(10): 1434-1442, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39127916

RESUMEN

There is a strong association between total hip bone mineral density (THBMD) changes after 24 mo of treatment and reduced fracture risk. We examined whether changes in THBMD after 12 and 18 mo of treatment are also associated with fracture risk reduction. We used individual patient data (n = 122 235 participants) from 22 randomized, placebo-controlled, double-blind trials of osteoporosis medications. We calculated the difference in mean percent change in THBMD (active-placebo) at 12, 18, and 24 mo using data available for each trial. We determined the treatment-related fracture reductions for the entire follow-up period, using logistic regression for radiologic vertebral fractures and Cox regression for hip, non-vertebral, "all" (combination of non-vertebral, clinical vertebral, and radiologic vertebral) fractures and all clinical fractures (combination of non-vertebral and clinical vertebral). We performed meta-regression to estimate the study-level association (r2 and 95% confidence interval) between treatment-related differences in THBMD changes for each BMD measurement interval and fracture risk reduction. The meta-regression revealed that for vertebral fractures, the r2 (95% confidence interval) was 0.59 (0.19, 0.75), 0.69 (0.32, 0.82), and 0.73 (0.33, 0.84) for 12, 18, and 24 mo, respectively. Similar patterns were observed for hip: r2 = 0.27 (0.00, 0.54), 0.39 (0.02, 0.63), and 0.41 (0.02, 0.65); non-vertebral: r2 = 0.27 (0.01, 0.52), 0.49 (0.10, 0.69), and 0.53 (0.11, 0.72); all fractures: r2 = 0.44 (0.10, 0.64), 0.63 (0.24, 0.77), and 0.66 (0.25, 0.80); and all clinical fractures: r2 = 0.46 (0.11, 0.65), 0.64 (0.26, 0.78), and 0.71 (0.32, 0.83), for 12-, 18-, and 24-mo changes in THBMD, respectively. These findings demonstrate that treatment-related THBMD changes at 12, 18, and 24 mo are associated with fracture risk reductions across trials. We conclude that BMD measurement intervals as short as 12 mo could be used to assess fracture efficacy, but the association is stronger with longer BMD measurement intervals.


In this study, we looked at how changes in hip bone density over time relate to the risk of fractures in people taking osteoporosis medications. We analysed data from over 122 000 participants across 22 different clinical trials. We found that the increase in bone density measured after 12, 18, and 24 mo of treatment was linked to the risk of fractures. Specifically, greater improvements in bone density were associated with fewer fractures in the spine, hips, and other bones. Using statistical methods, we calculated the strength of this association. We discovered that the later, we measured BMD in people taking the medication, the stronger the link between improved bone density and reduced fracture risk became. Our findings suggest that bone density measurements after 12 mo of treatment could help predict how well a medication will prevent fractures. However, the best predictions came from bone density changes measured over longer periods.


Asunto(s)
Densidad Ósea , Osteoporosis , Humanos , Densidad Ósea/efectos de los fármacos , Femenino , Osteoporosis/tratamiento farmacológico , Osteoporosis/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Anciano , Ensayos Clínicos Controlados Aleatorios como Asunto , Fracturas de la Columna Vertebral/prevención & control , Fracturas de la Columna Vertebral/diagnóstico por imagen , Cadera/diagnóstico por imagen , Factores de Tiempo , Fracturas de Cadera/prevención & control , Factores de Riesgo
5.
medRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39148825

RESUMEN

Background: Growth differentiation factor 15 (GDF-15) is a member of the TGFß superfamily secreted by many cell types and found at higher blood concentrations as chronological age increases (1). Given the emergence of GDF-15 as a key protein associated with aging, it is important to understand the multitude of conditions with which circulating GDF-15 is associated. Methods: We pooled data from 1,174 randomly selected Health ABC Study (Health ABC) participants and 1,503 Cardiovascular Health Study (CHS) participants to evaluate the risk of various conditions and age-related outcomes across levels of GDF-15. The primary outcomes were (1) risk of mobility disability and falls; (2) impaired cognitive function; (3) and increased risk of cardiovascular disease and total mortality. Results: The pooled study cohort had a mean age of 75.4 +/-4.4 years. Using a Bonferroni-corrected threshold, our analyses show that high levels of GDF-15 were associated with a higher risk of severe mobility disability (HR: 2.13 [1.64, 2.77]), coronary heart disease (HR: 1.47 [1.17, 1.83]), atherosclerotic cardiovascular disease (HR: 1.56 [1.22, 1.98]), heart failure (HR: 2.09 [1.66, 2.64]), and mortality (HR: 1.81 [1.53, 2.15]) when comparing the highest and lowest quartiles. For CHS participants, analysis of extreme quartiles in fully adjusted models revealed a 3.5-fold higher risk of dementia (HR: 3.50 [1.97, 6.22]). Conclusions: GDF-15 is associated with several age-related outcomes and diseases, including mobility disability, impaired physical and cognitive performance, dementia, cardiovascular disease, and mortality. Each of these findings demonstrates the importance of GDF-15 as a potential biomarker for many aging-related conditions.

6.
J Bone Miner Res ; 39(10): 1393-1405, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39073912

RESUMEN

The overarching goal of osteoporosis management is to prevent fractures. A goal-directed approach to long-term management of fracture risk helps ensure that the most appropriate initial treatment and treatment sequence is selected for individual patients. Goal-directed treatment decisions require assessment of clinical fracture history, vertebral fracture identification (using vertebral imaging as appropriate), measurement of bone mineral density (BMD), and consideration of other major clinical risk factors. Treatment targets should be tailored to each patient's individual risk profile and based on the specific indication for beginning treatment, including recency, site, number and severity of prior fractures, and BMD levels at the total hip, femoral neck, and lumbar spine. Instead of first-line bisphosphonate treatment for all patients, selection of initial treatment should focus on reducing fracture risk rapidly for patients at very high and imminent risk, such as in those with recent fractures. Initial treatment selection should also consider the probability that a BMD treatment target can be attained within a reasonable period of time and the differential magnitude of fracture risk reduction and BMD impact with osteoanabolic versus antiresorptive therapy. This position statement of the ASBMR/BHOF Task Force on Goal-Directed Osteoporosis Treatment provides an overall summary of the major clinical recommendations about treatment targets and strategies to achieve those targets based on the best evidence available, derived primarily from studies in older postmenopausal women of European ancestry.


Goal-directed treatment can help healthcare providers recommend the best treatments for individual patients to prevent fractures. The goal-directed strategy considers the site, number, and recency of prior fractures. This may require imaging for spine fractures, which may not have caused pain. Treatment decisions also require bone mineral density (BMD) measurement and consideration of other major risk factors. In contrast to the standard approach, same first treatment for all, treatment selection is tailored to an individual's risk. In patients with recent fractures of the spine, hip, or pelvis, fracture risk is very high and treatment should rapidly reduce that risk. For others, the target is a specific BMD level and should consider the likelihood that the treatment target can be attained within a reasonable period of time, which differs for osteoporosis medications. After initial therapy, BMD should be assessed to determine if the target has been achieved. If so, strategies should focus on maintaining BMD. If the target is not yet achieved, treatment should be intensified, or continued if it is already the most potent option. This position statement represents a consensus of expert recommendations about treatment targets and strategies to achieve those targets based on the best available evidence.


Asunto(s)
Densidad Ósea , Osteoporosis , Humanos , Osteoporosis/tratamiento farmacológico , Densidad Ósea/efectos de los fármacos , Objetivos , Fracturas Osteoporóticas/prevención & control , Femenino , Comités Consultivos , Factores de Riesgo , Conservadores de la Densidad Ósea/uso terapéutico
7.
J Bone Oncol ; 47: 100611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39021590

RESUMEN

Introduction: Androgen Deprivation Therapy (ADT) for prostate cancer (PC) has substantial negative impacts on the musculoskeletal system and body composition. Many studies have focused on the effects of ADT on areal bone mineral density (aBMD), but aBMD does not capture key determinants of bone strength and fracture risk, for example volumetric bone density (vBMD), geometry, cortical thickness and porosity, trabecular parameters and rate of remodelling. More specialist imaging techniques such as high-resolution peripheral quantitative computed tomography (HR-pQCT) have become available to evaluate these parameters. Although it has previously been demonstrated that bone microarchitectural deterioration occurs in men undergoing ADT, the aim of the ANTELOPE study was to examine longitudinal changes in bone microstructure alongside a range of musculoskeletal parameters and frailty, comparing men with PC receiving ADT alone or ADT plus chemotherapy for metastatic disease, with a healthy age-matched population. Methods: We used HR-pQCT to investigate effects of 12 months of ADT on vBMD and microstructural parameters, complemented by assessment of changes in aBMD, serum bone turnover markers, sex hormones, body composition, grip strength, physical and muscle function, frailty and fracture risk. We studied three groups: Group A - men with localised/locally advanced PC due to commence ADT; Group B - men with newly diagnosed hormone-sensitive, metastatic PC, starting ADT alongside docetaxel chemotherapy and steroids; Group C - healthy, age-matched men. The primary endpoint was change in vBMD (Group A vs Group C) at the distal radius. Results: Ninety-nine participants underwent baseline study assessments (Group A: n = 38, Group B: n = 30 and Group C: n = 31). Seventy-five participants completed all study assessments (Group A (29), Group B (18), Group C (28). At baseline, there were no significant differences between Groups A and C in any of the BMD or bone microstructure outcomes of interest. After 12 months of ADT treatment, there was a significantly greater decrease in vBMD (p < 0.001) in Group A (mean 12-month change = -13.7 mg HA/cm3, -4.1 %) compared to Group C (mean 12-month change = -1.3 mg HA/cm3, -0.4 %), demonstrating achievement of primary outcome. Similar effects were observed when comparing the change in vBMD between Group B (mean 12-month change = -13.5 mg HA/cm3, -4.3 %) and Group C. These changes were mirrored in aBMD. ADT resulted in microstructural deterioration, a reduction in estimated bone strength and an increase in bone turnover. There was evidence of increase in total fat mass and trunkal fat mass in ADT-treated patients, with marked loss in upper limb mass, along with BMI gain. Frailty increased and physical performance and strength deteriorated in both ADT groups, relative to the healthy control group. Conclusion: The study showed that ADT has profound effects on vBMD, aBMD, bone microstructure and strength and body composition, and important impacts on frailty and physical performance. Whilst DXA remains a valuable tool (changes in aBMD are of the same magnitude as those observed for vBMD), HR-pQCT should be considered for assessing the effects of anti-androgens and other newer PC therapies on bone, as well as potential mitigation by bone-targeted agents.

8.
J Bone Miner Res ; 39(7): 867-876, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691441

RESUMEN

Some osteoporosis drug trials have suggested that treatment is more effective in those with low BMD measured by DXA. This study used data from a large set of randomized controlled trials (RCTs) to determine whether the anti-fracture efficacy of treatments differs according to baseline BMD. We used individual patient data from 25 RCTs (103 086 subjects) of osteoporosis medications collected as part of the FNIH-ASBMR SABRE project. Participants were stratified into FN BMD T-score subgroups (≤-2.5, > -2.5). We used Cox proportional hazard regression to estimate treatment effect for clinical fracture outcomes and logistic regression for the radiographic vertebral fracture outcome. We also performed analyses based on BMD quintiles. Overall, 42% had a FN BMD T-score ≤ -2.5. Treatment with anti-osteoporosis drugs led to significant reductions in fractures in both T-score ≤ -2.5 and > -2.5 subgroups. Compared to those with FN BMD T-score > -2.5, the risk reduction for each fracture outcome was greater in those with T-score ≤ -2.5, but only the all-fracture outcome reached statistical significance (interaction P = .001). Results were similar when limited to bisphosphonate trials. In the quintile analysis, there was significant anti-fracture efficacy across all quintiles for vertebral fractures and with greater effects on fracture risk reduction for non-vertebral, all, and all clinical fractures in the lower BMD quintiles (all interaction P ≤ .03). In summary, anti-osteoporotic medications reduced the risk of fractures regardless of baseline BMD. Significant fracture risk reduction with treatment for 4 of the 5 fracture endpoints was seen in participants with T-scores above -2.5, though effects tended to be larger and more significant in those with baseline T-scores <-2.5.


It is important to know whether our treatments for osteoporosis are effective at reducing the risk of fracture no matter what the BMD before starting treatment. This study used data from many clinical trials to determine whether the anti-fracture efficacy of treatments differs according to baseline BMD. We found that anti-osteoporotic medications reduced the risk of fractures regardless of baseline BMD, though effects tended to be larger and more significant in those with lower BMD scores.


Asunto(s)
Densidad Ósea , Humanos , Densidad Ósea/efectos de los fármacos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Factores de Riesgo , Fracturas Óseas/tratamiento farmacológico , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Fracturas de la Columna Vertebral/tratamiento farmacológico , Fracturas de la Columna Vertebral/diagnóstico por imagen , Osteoporosis/tratamiento farmacológico
9.
EClinicalMedicine ; 72: 102624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737002

RESUMEN

Background: Previous studies have indicated that glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) may enhance bone formation and have neutral or beneficial effects on fracture risk. We evaluated the effect of the GLP-1RA semaglutide on the bone formation marker Procollagen type I N-terminal propeptide (PINP) in adults with increased fracture risk. Methods: This randomised, placebo-controlled, double-blinded, phase 2 clinical trial was conducted at two public hospitals in Denmark. We enrolled 64 men and women with increased fracture risk based on a T-score < -1.0 at the total hip or lumbar spine and/or low-energy fracture within three years of recruitment. Participants were randomised (1:1) to receive once-weekly subcutaneous semaglutide 1.0 mg or placebo. The primary outcome was changes in plasma (P)-PINP from baseline to week 52. Primary and safety outcomes were assessed and evaluated for all participants. This trial is complete and registered with ClinicalTrials.gov, NCT04702516. Findings: Between March 24 and December 8, 2021, 55 (86%) postmenopausal women and nine men with a mean age of 63 years (SD 5.5) and BMI of 27.5 kg/m2 (SD 4.5) were enrolled. There was no effect on changes in P-PINP from baseline to week 52 between the two groups (estimated treatment difference (ETD) semaglutide versus placebo 3.8 µg/L [95% CI -5.6 to 13.3]; p = 0.418), and no difference in P-PINP levels between groups at week 52 (semaglutide 64.3 µg/L versus placebo 62.3 µg/L [95% CI -10.8 to 15.0]; p = 0.749). The secondary outcomes showed higher plasma levels of bone resorption marker Collagen type I cross-linked C-terminal telopeptide (P-CTX) in the semaglutide group than in the placebo group (ETD 166.4 ng/L [95% CI 25.5-307.3]; p = 0.021). Compared to placebo, lumbar spine and total hip areal bone mineral densities (aBMD) were lower in the semaglutide group after 52 weeks ((ETD lumbar spine -0.018 g/cm3 [95% CI -0.031 to -0.005]; p = 0.007); ETD total hip -0.020 g/cm2 ([95% CI -0.032 to -0.008]; p = 0.001). Treatment differences in femoral neck aBMD were not observed ([95% CI [-0.017 to 0.006]; p = 0.328). Further, body weight was lower in the semaglutide group than in the placebo group after 52 weeks (ETD -6.8 kg [95% CI -8.8 to -4.7]; p < 0.001). Thirty-one [97%] in the semaglutide group and 18 [56%] in the placebo group experienced at least one adverse event, including four serious events (two in each group). No episodes of hypoglycaemia or deaths were reported. Interpretation: In adults with increased fracture risk, semaglutide once weekly did not increase bone formation based on the bone formation marker P-PINP. The observed increase in bone resorption in the semaglutide group may be explained by the accompanying weight loss. Funding: Region of Southern Denmark, Novo Nordisk Foundation, and Gangsted Foundation. Novo Nordisk provided the investigational drug and placebo.

11.
J Bone Miner Res ; 39(1): 8-16, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38630878

RESUMEN

Adjuvant bisphosphonates are often recommended in postmenopausal women with early breast cancer at intermediate-to-high risk of disease recurrence, but the magnitude and duration of their effects on bone mineral density (BMD) and bone turnover markers (BTMs) are not well described. We evaluated the impact of adjuvant zoledronate on areal BMD and BTMs in a sub-group of patients who had completed the large 5-yr randomized Adjuvant Zoledronic Acid to Reduce Recurrence (AZURE) trial. About 224 women (recurrence free) who had completed the AZURE trial within the previous 3 mo were recruited from 20 UK AZURE trial sites. One hundred twenty had previously been randomized to zoledronate (19 doses of 4 mg over 5 yr) and 104 to the control arm. BMD and BTMs were assessed at sub-study entry, 6 (BTMs only), 12, 24, and 60 mo following the completion of AZURE. As expected, mean BMD, T-scores, and Z-scores at sub-study entry were higher in the zoledronate vs the control arm. At the lumbar spine, the mean (SD) standardized BMD (sBMD) was 1123 (201) and 985 (182) mg/cm2 in the zoledronate and control arms, respectively (P < .0001). The baseline differences in sBMD persisted at all assessed skeletal sites and throughout the 5-yr follow-up period. In patients completing zoledronate treatment, BTMs were significantly lower than those in the control arm (α- and ß-urinary C-telopeptide of type-I collagen, both P < .00001; serum intact pro-collagen I N-propeptide, P < .00001 and serum tartrate-resistant acid phosphatase 5b, P = .0001). Some offset of bone turnover inhibition occurred in the 12 mo following the completion of zoledronate treatment. Thereafter, during the 60 mo of follow-up, all BTMs remained suppressed in the zoledronate arm relative to the control arm. In conclusion, in addition to the known anti-cancer benefits of adjuvant zoledronate, there are likely to be positive, lasting benefits in BMD and bone turnover.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias de la Mama , Humanos , Femenino , Difosfonatos/uso terapéutico , Ácido Zoledrónico/farmacología , Densidad Ósea , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Imidazoles/farmacología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Vértebras Lumbares , Remodelación Ósea , Colágeno
12.
JBMR Plus ; 8(5): ziae035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606148

RESUMEN

MicroRNAs are involved in post-transcriptional regulation of gene expression. Due to their regulatory role, microRNAs are differently expressed during specific conditions in healthy and diseased individuals, so microRNAs circulating in the blood could be used as diagnostic and prognostic biomarkers for various diseases and conditions. We want to investigate the variability of circulating microRNAs and bone turnover markers in weekly time intervals in older women. In a single-site longitudinal study, a panel of 19 bone-related miRNAs was measured using the osteomiR RT-qPCR assay in serum samples of 35 postmenopausal women divided into 3 groups: healthy controls (n = 12), low BMD (n = 14), and vertebral fractures (n = 9). Blood samples for measurement of CTX, PINP, OC, and bone ALP were collected once per week for 8 weeks at 9:00 AM after overnight fasting. Serum samples from all participants were analyzed for 19 microRNA bone biomarkers and 4 bone turnover markers over 8 weeks. We analyzed the data using a mixed model analysis of variance and found no significant changes between week-by-week time points in any of the groups. To estimate intraindividual variability between weekly time points, we have calculated the median coefficient of variation (CV). This was between 28.4% and 80.2% for microRNA, with an assay CV of 21.3%. It was between 8.5% and 15.6% for bone turnover markers, with an assay CV of 3.5% to 6.5%. The intraindividual variability was similar between groups. Circulating microRNAs measured in serum had a higher weekly intraindividual variability than bone turnover markers due in part to a higher assay CV.

13.
J Bone Miner Res ; 39(3): 202-210, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477751

RESUMEN

Denosumab is a monoclonal antibody used to reduce risk of fractures in osteoporosis. ROSALIA was a multicenter, double-blind, randomized, integrated phase I/phase III study comparing the efficacy, pharmacokinetics (PK), pharmacodynamics (PD), immunogenicity, and safety of proposed biosimilar denosumab GP2411 with reference denosumab (REF-DMAb) (Prolia®; Amgen). Postmenopausal women with osteoporosis were randomized 1:1 to 2 60-mg doses of GP2411 or REF-DMAb, one at study start and one at week 26. At week 52, the REF-DMAb group was re-randomized 1:1 to a third dose of REF-DMAb or switch to GP2411. The primary efficacy endpoint was percentage change from baseline (%CfB) in LS-BMD at week 52. Secondary efficacy endpoints were %CfB in LS-BMD, FN-BMD, and TH-BMD at weeks 26 and 78 (and week 52 for FN-BMD and TH-BMD). Primary PK and PD endpoints were the area under the serum concentration-time curve extrapolated to infinity and maximum drug serum concentration at week 26, and the area under the effect-time curve of the %CfB in serum CTX at week 26. Secondary PK and PD endpoints included drug serum concentrations and %CfB in serum CTX and P1NP during the study period. Similar efficacy was demonstrated at week 52, with 95% CIs of the difference in %CfB in LS-BMD between treatment groups fully contained within prespecified equivalence margins. Similarity in PK and PD was demonstrated at week 26. Immunogenicity was similar between groups and was not impacted by treatment switch. The rate of new vertebral fractures was comparable. Treatment-emergent adverse events were comparable between groups (63.6% [GP2411/GP2411]; 76.0% [REF-DMAb/REF-DMAb]; 76.6% [REF-DMAb/GP2411]). In conclusion, ROSALIA showed similar efficacy, PK and PD, and comparable safety and immunogenicity of GP2411 to REF-DMAb in postmenopausal osteoporosis.


Denosumab is a biologic treatment that stops bone breakdown. This clinical trial evaluated how similar GP2411 (a denosumab biosimilar in development) is compared with European-approved reference denosumab in women with post-menopausal osteoporosis. Biosimilars are highly similar to the original treatment ('reference denosumab') and may have a lower price. 263 patients were randomly assigned to receive GP2411 and 264 to reference denosumab. Treatment was given at the study beginning, at Week 26 and at Week 52. 124 patients were re-assigned at Week 52 to test the effect of changing from reference denosumab to GP2411. The study showed similarity in how the body interacts with the treatments, what effects the treatment has (both measured over 26 weeks), and bone mineral density (measured over 78 weeks). Antibody responses to GP2411 were detected in similar proportions of patients on each treatment. Reported adverse events were similar between treatments before Week 52, and from Week 52 to 78, and <5% of patients experienced serious adverse events. A change of treatment from reference denosumab to GP2411 did not affect outcomes. These results showed similarity between GP2411 and reference denosumab in this population. In future, GP2411 may enable more patients to benefit from denosumab.


Asunto(s)
Biosimilares Farmacéuticos , Conservadores de la Densidad Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Femenino , Humanos , Biosimilares Farmacéuticos/efectos adversos , Densidad Ósea , Conservadores de la Densidad Ósea/uso terapéutico , Denosumab/efectos adversos , Osteoporosis/tratamiento farmacológico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Método Doble Ciego
14.
J Bone Miner Res ; 39(2): 85-94, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38477745

RESUMEN

Type 1 diabetes mellitus (T1DM) has been linked to increased osteocyte apoptosis, local accumulation of mineralized lacunar spaces, and microdamage suggesting an impairment of the mechanoregulation network in affected individuals. Diabetic neuropathy might exacerbate this dysfunction through direct effects on bone turnover, and indirect effects on balance, muscle strength, and gait. However, the in vivo effects of impaired bone mechanoregulation on bone remodeling in humans remain underexplored. This longitudinal cohort study assessed consenting participants with T1DM and varying degree of distal symmetric sensorimotor polyneuropathy (T1DM, n = 20, median age 46.5 yr, eight female) and controls (CTRL; n = 9, median age 59.0 yr, four female) at baseline and 4-yr follow-up. Nerve conduction in participants with T1DM was tested using DPNCheck and bone remodeling was quantified with longitudinal high-resolution peripheral quantitative-computed tomography (HR-pQCT, 82 µm) at the standard distal sites. Local trabecular bone formation (Tb.F) and resorption (Tb.R) sites were captured by implementing 3D rigid image registration of HR-pQCT images, and the mechanical environment across the bone microarchitecture at these sites was simulated using micro-finite element analysis. We calculated odds ratios to determine the likelihood of bone formation (ORF) and resorption (ORR) with increasing/decreasing strain in percent as markers for mechanoregulation. At the distal radius, Tb.F was 47% lower and Tb.R was 59% lower in T1DM participants compared with CTRL (P < .05). Tb.F correlated positively with nerve conduction amplitude (R = 0.69, P < .05) in participants with T1DM and negatively with glycated hemoglobin (HbA1c) (R = -0.45, P < .05). Additionally, ORF was 34% lower and ORR was 18% lower in T1DM compared with CTRL (P < .05). Our findings represent in vivo evidence suggesting that bone remodeling in individuals with T1DM is in a state of low responsiveness to mechanical stimuli, resulting in impaired bone formation and resorption rates; these correlate to the degree of neuropathy and level of diabetes control.


In a healthy adult, the body's skeleton self-repairs­or remodels­itself to maintain its strength. At the microscopic level, this process is orchestrated by cells, called osteocytes, which can sense and respond to local mechanical forces. Recent studies have suggested that type 1 diabetes mellitus (T1DM), a metabolic bone disease, may negatively impact this mechanically regulated process and reduce bone strength. To investigate this further, we utilized novel methods to monitor local changes in bone microstructure over time using high­resolution peripheral quantitative­computed tomography, allowing us to study the results of cellular behavior on bone remodeling in participants over time. Our study found that bone formation was 47% lower and bone resorption was 59% lower in participants with T1DM compared with controls (CTRL). Bone formation correlated positively with peripheral nerve function and negatively with glycaemic control in participants with T1DM. Furthermore, the links between mechanical forces acting on bone remodeling were 34% weaker for formation and 18% weaker for resorption compared with CTRL. Our findings show that bone remodeling in people with T1DM is in a state of low responsiveness to mechanical stimuli, resulting in impaired bone formation and resorption rates, and ultimately, impaired self-repair.


Asunto(s)
Remodelación Ósea , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Persona de Mediana Edad , Masculino , Adulto
15.
J Bone Miner Res ; 39(5): 544-550, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38501786

RESUMEN

There is a common belief that antiosteoporosis medications are less effective in older adults. This study used data from randomized controlled trials (RCTs) to determine whether the anti-fracture efficacy of treatments and their effects on BMD differ in people ≥70 compared to those <70 yr. We used individual patient data from 23 RCTs of osteoporosis medications collected as part of the FNIH-ASBMR SABRE project. We assessed the following fractures: radiographic vertebral, non-vertebral, hip, all clinical, and all fractures. We used Cox proportional hazard regression to estimate treatment effect for clinical fracture outcomes, logistic regression for the radiographic vertebral fracture outcome, and linear regression to estimate treatment effect on 24-mo change in hip and spine BMD in each age subgroup. The analysis included 123 164 (99% female) participants; 43% being ≥70 yr. Treatment with anti-osteoporosis drugs significantly and similarly reduced fractures in both subgroups (eg, odds ratio [OR] = 0.47 and 0.51 for vertebral fractures in those below and above 70 yr, interaction P = .19; hazard ratio [HR] for all fractures: 0.72 vs 0.70, interaction P = .20). Results were similar when limited to bisphosphonate trials with the exception of hip fracture risk reduction which was somewhat greater in those <70 (HR = 0.44) vs ≥70 (HR = 0.79) yr (interaction P = .02). Allocation to anti-osteoporotic drugs resulted in significantly greater increases in hip and spine BMD at 24 mo in those ≥70 compared to those <70 yr. In summary, anti-osteoporotic medications similarly reduced the risk of fractures regardless of age, and the few small differences in fracture risk reduction by age were of uncertain clinical significance.


Medications used for osteoporosis maybe are less effective in older adults. This study used data from clinical trials to determine whether these medications work equally well in reducing the risk of fractures in people ≥70 compared to those <70 yr. The analysis included 123 164 participants with data from 23 trials. Treatment with anti-osteoporosis drugs significantly reduced fractures in both groups in a similar way. The BMD increased more in the older group.


Asunto(s)
Densidad Ósea , Humanos , Femenino , Anciano , Masculino , Densidad Ósea/efectos de los fármacos , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Edad , Fracturas Óseas/tratamiento farmacológico , Resultado del Tratamiento , Osteoporosis/tratamiento farmacológico , Anciano de 80 o más Años , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/farmacología
16.
Bone ; 182: 117051, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382701

RESUMEN

Areal bone mineral density (aBMD) currently represents the clinical gold standard for hip fracture risk assessment. Nevertheless, it is characterised by a limited prediction accuracy, as about half of the people experiencing a fracture are not classified as at being at risk by aBMD. In the context of a progressively ageing population, the identification of accurate predictive tools would be pivotal to implement preventive actions. In this study, DXA-based statistical models of the proximal femur shape, intensity (i.e., density) and their combination were developed and employed to predict hip fracture on a retrospective cohort of post-menopausal women. Proximal femur shape and pixel-by-pixel aBMD values were extracted from DXA images and partial least square (PLS) algorithm adopted to extract corresponding modes and components. Subsequently, logistic regression models were built employing the first three shape, intensity and shape-intensity PLS components, and their ability to predict hip fracture tested according to a 10-fold cross-validation procedure. The area under the ROC curves (AUC) for the shape, intensity, and shape-intensity-based predictive models were 0.59 (95%CI 0.47-0.69), 0.80 (95%CI 0.70-0.90) and 0.83 (95%CI 0.73-0.90), with the first being significantly lower than the latter two. aBMD yielded an AUC of 0.72 (95%CI 0.59-0.82), found to be significantly lower than the shape-intensity-based predictive model. In conclusion, a methodology to assess hip fracture risk uniquely based on the clinically available imaging technique, DXA, is proposed. Our study results show that hip fracture risk prediction could be enhanced by taking advantage of the full set of information DXA contains.


Asunto(s)
Densidad Ósea , Fracturas de Cadera , Humanos , Femenino , Estudios Retrospectivos , Fracturas de Cadera/diagnóstico por imagen , Fracturas de Cadera/epidemiología , Fémur , Modelos Estadísticos , Absorciometría de Fotón/métodos
17.
Br J Nutr ; 131(5): 901-910, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-37877251

RESUMEN

There is a dearth of data on Se status in very old adults. The aims of this study were to assess Se status and its determinants in 85-year-olds living in the Northeast of England by measuring serum Se and selenoprotein P (SELENOP) concentrations and glutathione peroxidase 3 (GPx3) activity. A secondary aim was to examine the interrelationships between each of the biomarkers. In total, 757 participants (463 women, 293 men) from the Newcastle 85+ Study were included. Biomarker concentrations were compared with selected cut-offs (serum Se: suboptimal 70 µg/l and deficient 45 µg/l; SELENOP: suboptimal 4·5 mg/l and deficient 2·6 mg/l). Determinants were assessed using linear regressions, and interrelationships were assessed using restricted cubic splines. Median (inter-quartile range) concentrations of serum Se, SELENOP and of GPx3 activity were 53·6 (23·6) µg/l, 2·9 (1·9) mg/l and 142·1 (50·7) U/l, respectively. Eighty-two percentage and 83 % of participants had suboptimal serum Se (< 70 µg/l) and SELENOP (< 4·5 mg/l), and 31 % and 40 % of participants had deficient serum Se (< 45 µg/l) and SELENOP (< 2·6 mg/l), respectively. Protein intake was a significant determinant of Se status. Additional determinants of serum Se were sex, waist:hip ratio, self-rated health and disease, while sex, BMI and physical activity were determinants of GPx3 activity. There was a linear association between serum Se and SELENOP, and nonlinear associations between serum Se and GPx3 activity and between SELENOP and GPx3 activity. These findings indicate that most participants had suboptimal Se status to saturate circulating SELENOP.


Asunto(s)
Selenio , Masculino , Adulto , Humanos , Femenino , Selenoproteína P/metabolismo , Biomarcadores , Antioxidantes , Inglaterra , Glutatión Peroxidasa
18.
Curr Osteoporos Rep ; 22(1): 1-10, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38093031

RESUMEN

PURPOSE OF THE REVIEW: The purpose of the review is to summarise the current scientific evidence on the efficacy of osteoporosis medications in patients with type 2 diabetes. RECENT FINDINGS: Type 2 diabetes (T2D) is a growing global epidemic. The highest prevalence is observed in the elderly, the same population affected by osteoporosis. Despite normal or even increased bone mineral density and low bone turnover, T2D is associated with an increased risk of fractures in most skeletal sites. These findings raised concerns over the efficacy of anti-osteoporosis drugs in this population. There is no randomised controlled trial designed specifically for people with T2D. However, observational studies and post-hoc analyses of randomised controlled trials have provided valuable insights into the effects of various anti-osteoporosis treatments in this population. Overall, most anti-osteoporosis drugs seem to have similar efficacy and safety profiles for people with and without type 2 diabetes. However, continued research and long-term safety data are needed to optimise treatment strategies and improve bone health outcomes in this population. The current evidence suggests that most anti-osteoporosis drugs exhibit comparable efficacy in people with and without T2D.


Asunto(s)
Conservadores de la Densidad Ósea , Diabetes Mellitus Tipo 2 , Fracturas Óseas , Osteoporosis , Anciano , Humanos , Huesos , Densidad Ósea , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fracturas Óseas/epidemiología , Fracturas Óseas/prevención & control , Fracturas Óseas/complicaciones , Osteoporosis/tratamiento farmacológico , Osteoporosis/complicaciones , Conservadores de la Densidad Ósea/uso terapéutico
19.
Artículo en Inglés | MEDLINE | ID: mdl-38087944

RESUMEN

CONTEXT: Collagen type I C-telopeptide (CTX) and procollagen type I N-terminal propeptide (PINP) are reference bone resorption and formation markers, respectively. OBJECTIVE: To characterize CTX and PINP trajectories across the menopause transition (MT). DESIGN: 18-year longitudinal analysis from the Study of Women's Health Across the Nation. SETTING: Community-based cohort. PARTICIPANTS: 541 women (126 Black, 90 Chinese, 87 Japanese, 238 White) who transitioned from pre- to postmenopause. MAIN OUTCOME MEASURES: CTX and PINP. RESULTS: Multivariable mixed effects regression fit piecewise linear models of CTX or PINP relative to years from final menstrual period (FMP); covariates were race/ethnicity, body mass index (BMI), and age at FMP. In the referent participant (White, 52.46 years at FMP, BMI 27.12 kg/m2), CTX and PINP were stable until 3 years pre- FMP (premenopause). During the MT (3 years before to 3 years after the FMP), CTX and PINP increased 10.3% (p<0.0001) and 7.5% (p<0.0001) per year, respectively; MT-related gains totaled 61.9% for CTX and 45.2% for PINP. Starting 3 years post-FMP (postmenopause), CTX and PINP decreased 3.1% (p<0.0001) and 2.9% (p<0.0001) per year, respectively. Compared to White women, during the MT, Chinese participants had larger gains in CTX (p=0.01), and Japanese women experienced greater increases in CTX (p<0.0001) and PINP (p=0.02). In postmenopause, CTX (p=0.01) and PINP (p=0.01) rose more in Japanese relative to White women. CONCLUSIONS: CTX and PINP are stable in premenopause, increase during the MT, and decrease in postmenopause. During the MT and postmenopause, bone turnover change rates vary by race/ethnicity.

20.
JBMR Plus ; 7(11): e10838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025034

RESUMEN

Diabetes is characterized by hyperglycemia, but the two main types, type 1 diabetes (T1D) and type 2 diabetes (T2D), have distinct pathophysiology and epidemiological profiles. Individuals with T1D and T2D have an increased risk of fractures, particularly of the hip, upper arm, ankle, and nonvertebral sites. The risk of fractures is higher in T1D compared to T2D. The diagnosis of osteoporosis in individuals with T1D and T2D follows similar criteria as in the general population, but treatment thresholds may differ. Antiresorptive therapies, the first-line treatment for osteoporosis, are effective in individuals with T2D. Observational studies and post hoc analyses of previous trials have indicated that antiresorptive drugs, such as bisphosphonates and selective estrogen receptor modulators, are equally effective in reducing fracture risk and increasing bone mineral density (BMD) in individuals with and without T2D. Denosumab has shown similar effects on vertebral fracture risk but increases the risk of nonvertebral fractures. Considering the low bone turnover observed in T1D and T2D, anabolic therapies, which promote bone formation and resorption, have emerged as a potential treatment option for bone fragility in this population. Data from observational studies and post hoc analyses of previous trials also showed similar results in increasing BMD and reducing the risk of fractures in people with or without T2D. However, no evidence suggests that anabolic therapy has greater efficacy than antiresorptive drugs. In conclusion, there is an increased risk of fractures in T1D and T2D. Reductions in BMD cannot solely explain the relationship between T1D and T2D and fractures. Bone microarchitecture and other factors play a role. Antiresorptive and anabolic therapies have shown efficacy in reducing fracture risk in individuals with T2D, but the evidence is more robust for antiresorptive drugs. Evidence in T1D is scant. Further research is needed to fully understand the underlying mechanisms and optimize management strategies for bone fragility in T1D and T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...