Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(1): 62-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37889205

RESUMEN

Microtubule-associated protein 65-1 (MAP65-1) protein plays an essential role in plant cellular dynamics through impacting stabilization of the cytoskeleton by serving as a crosslinker of microtubules. The role of MAP65-1 in plants has been associated with phenotypic outcomes in response to various environmental stresses. The Arabidopsis MAP65-1 (AtMAP65-1) is a known virulence target of plant bacterial pathogens and is thus a component of plant immunity. Soybean events were generated that carry transgenic alleles for both AtMAP65-1 and GmMAP65-1, the soybean AtMAP65-1 homolog, under control of cauliflower mosaic virus 35S promoter. Both AtMAP65-1 and GmMAP65-1 transgenic soybeans are more resistant to challenges by the soybean bacterial pathogen Pseudomonas syringae pv. glycinea and the oomycete pathogen Phytophthora sojae, but not the soybean cyst nematode, Heterodera glycines. Soybean plants expressing AtMAP65-1 and GmMAP65-1 also display a tolerance to the herbicide oryzalin, which has a mode of action to destabilize microtubules. In addition, GmMAP65-1-expressing soybean plants show reduced cytosol ion leakage under freezing conditions, hinting that ectopic expression of GmMAP65-1 may enhance cold tolerance in soybean. Taken together, overexpression of AtMAP65-1 and GmMAP65-1 confers tolerance of soybean plants to various biotic and abiotic stresses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Glycine max/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microtúbulos/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
2.
Science ; 377(6614): eadc8969, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36048923

RESUMEN

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Asunto(s)
ADP-Ribosil Ciclasa , Proteínas Adaptadoras del Transporte Vesicular , Bacterias , Proteínas Bacterianas , ADP-Ribosa Cíclica , Inmunidad de la Planta , Receptores Toll-Like , ADP-Ribosil Ciclasa/química , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADP-Ribosa Cíclica/biosíntesis , ADP-Ribosa Cíclica/química , Isomerismo , NAD/metabolismo , Dominios Proteicos , Receptores de Interleucina-1/química , Transducción de Señal , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptófano/química , Triptófano/genética
3.
Mol Plant Microbe Interact ; 35(11): 964-976, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35881867

RESUMEN

The discovery of the enzymatic activity of the toll/interleukin-1 receptor (TIR) domain protein SARM1 five years ago preceded a flood of discoveries regarding the nucleotide substrates and products of TIR domains in plants, animals, bacteria, and archaea. These discoveries into the activity of TIR domains coincide with major advances in understanding the structure and mechanisms of NOD-like receptors and the mutual dependence of pattern recognition receptor- and effector-triggered immunity (PTI and ETI, respectively) in plants. It is quickly becoming clear that TIR domains and TIR-produced nucleotides are ancestral signaling molecules that modulate immunity and that their activity is closely associated with Ca2+ signaling. TIR domain research now bridges the separate disciplines of molecular plant- and animal-microbe interactions, neurology, and prokaryotic immunity. A cohesive framework for understanding the role of enzymatic TIR domains in diverse organisms will help unite the research of these disparate fields. Here, we review known products of TIR domains in plants, animals, bacteria, and archaea and use context gained from animal and prokaryotic TIR domain systems to present a model for TIR domains, nucleotides, and Ca2+ at the intersection of PTI and ETI in plant immunity. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Nucleótidos , Receptores de Interleucina-1 , Animales , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Inmunidad de la Planta/genética , Proteínas NLR , Transducción de Señal , Archaea/genética
4.
New Phytol ; 233(2): 890-904, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657283

RESUMEN

The Pseudomonas syringae DC3000 type III effector HopAM1 suppresses plant immunity and contains a Toll/interleukin-1 receptor (TIR) domain homologous to immunity-related TIR domains of plant nucleotide-binding leucine-rich repeat receptors that hydrolyze nicotinamide adenine dinucleotide (NAD+ ) and activate immunity. In vitro and in vivo assays were conducted to determine if HopAM1 hydrolyzes NAD+ and if the activity is essential for HopAM1's suppression of plant immunity and contribution to virulence. HPLC and LC-MS were utilized to analyze metabolites produced from NAD+ by HopAM1 in vitro and in both yeast and plants. Agrobacterium-mediated transient expression and in planta inoculation assays were performed to determine HopAM1's intrinsic enzymatic activity and virulence contribution. HopAM1 is catalytically active and hydrolyzes NAD+ to produce nicotinamide and a novel cADPR variant (v2-cADPR). Expression of HopAM1 triggers cell death in yeast and plants dependent on the putative catalytic residue glutamic acid 191 (E191) within the TIR domain. Furthermore, HopAM1's E191 residue is required to suppress both pattern-triggered immunity and effector-triggered immunity and promote P. syringae virulence. HopAM1 manipulates endogenous NAD+ to produce v2-cADPR and promote pathogenesis. This work suggests that HopAM1's TIR domain possesses different catalytic specificity than other TIR domain-containing NAD+ hydrolases and that pathogens exploit this activity to sabotage NAD+ metabolism for immune suppression and virulence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , NAD/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Receptores de Interleucina-1/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...