Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Plant Cell Rep ; 43(8): 198, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023775

RESUMEN

KEY MESSAGE: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.


Asunto(s)
Plantas , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Transducción de Señal , Estrés Fisiológico , Especies Reactivas de Oxígeno/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Desarrollo de la Planta
4.
Curr Gene Ther ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38808710

RESUMEN

Oral Squamous Cell Carcinoma (OSCC) is a widespread and challenging disease that accounts for 94% of cancers of the oral cavity worldwide. Bacteriophages (phages) have shown promise as a potential theranostic agent for the treatment of OSCC. It may offer advantages in overcoming the challenges of conventional methods. Modern high-throughput pyrosequencing techniques confirm the presence of specific bacterial strains associated with OSCC. Bio-panning and filamentous phages facilitate visualization of the peptide on surfaces and show high affinity in OSCC cells. The peptide has the potential to bind integrin (αvß6), aid in diagnosis, and inhibit the proliferation of OSCC cells. Mimotopes of tumor-associated antigens show cytotoxic and immune responses against cancer cells. Biomarker-based approaches such as transferrin enable early OSCC diagnosis. A modified temperate phage introduces CRISPR-Cas3 to target antimicrobial-resistant bacteria associated with OSCC. The research findings highlight the evolving field of phage diagnostics and therapy and represent a new avenue for non-invasive, targeted approaches to the detection and treatment of OSCC. However, extensive clinical research is required to validate the efficacy of phages in innovative cancer theranostic strategies.

5.
ACS Omega ; 9(12): 13522-13533, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559935

RESUMEN

Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.

6.
Plant Physiol Biochem ; 208: 108519, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490154

RESUMEN

Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.


Asunto(s)
Metales de Tierras Raras , Nanoestructuras , Resiliencia Psicológica , Humanos , Metales de Tierras Raras/análisis , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Plantas/metabolismo , Desarrollo de la Planta , Suelo/química
7.
Prog Mol Biol Transl Sci ; 201: 1-19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37770166

RESUMEN

Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.

8.
Prog Mol Biol Transl Sci ; 201: 119-132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37770167

RESUMEN

Bacteriophages (Phages in short) were introduced as the natural enemy of bacteria that may act as alternatives to antibiotics to overcome the challenge of antibiotic resistance. However, in the recent history of science, phages have been employed in different molecular tools and used in numerous therapeutic and diagnostic approaches. Furthermore, thanks to the phage`s highly specific host range limited to prokaryotes, phage particles can be used as safe delivery vehicles and display systems. In this chapter, different phage display systems are introduced, in addition to various applications of phage display as a molecular and therapeutic tool in developing vaccines, antibacterial, and anti-cancer treatments.


Asunto(s)
Bacteriófagos , Humanos , Antibacterianos , Bacterias
9.
Front Microbiol ; 12: 653107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815346

RESUMEN

The misuse of antibiotics is leading to the emergence of multidrug-resistant (MDR) bacteria, and in the absence of available treatments, this has become a major global threat. In the middle of the recent severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic, which has challenged the whole world, the emergence of MDR bacteria is increasing due to prophylactic administration of antibiotics to intensive care unit patients to prevent secondary bacterial infections. This is just an example underscoring the need to seek alternative treatments against MDR bacteria. To this end, phage therapy has been proposed as a promising tool. However, further research in the field is mandatory to assure safety protocols and to develop appropriate regulations for its use in clinics. This requires investing more in such non-conventional or alternative therapeutic approaches, to develop new treatment regimens capable of reducing the emergence of MDR and preventing future global public health concerns that could lead to incalculable human and economic losses.

10.
Antibiotics (Basel) ; 10(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525684

RESUMEN

Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving endolysins.

11.
Med Res Rev ; 41(1): 72-135, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32852058

RESUMEN

Coronaviruses (CoVs) infect both humans and animals. In humans, CoVs can cause respiratory, kidney, heart, brain, and intestinal infections that can range from mild to lethal. Since the start of the 21st century, three ß-coronaviruses have crossed the species barrier to infect humans: severe-acute respiratory syndrome (SARS)-CoV-1, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV). These viruses are dangerous and can easily be transmitted from human to human. Therefore, the development of anticoronaviral therapies is urgently needed. However, to date, no approved vaccines or drugs against CoV infections are available. In this review, we focus on the medicinal chemistry efforts toward the development of antiviral agents against SARS-CoV-1, MERS-CoV, SARS-CoV-2, targeting biochemical events important for viral replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.


Asunto(s)
COVID-19/epidemiología , Química Farmacéutica , Brotes de Enfermedades , Antivirales/química , Antivirales/farmacología , Reposicionamiento de Medicamentos , Humanos , Internalización del Virus/efectos de los fármacos
12.
Transbound Emerg Dis ; 67(6): 2809-2817, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32453904

RESUMEN

Bacteriophage therapy is acknowledged as a potential tool to prevent or treat multidrug-resistant bacterial infections. In this study, our major focus was on the bacteriolytic activity of phage EcSw (ΦEcSw) against the emergence of the clinically important Escherichia coli Sw1 and E. coli O157:H7. The amount of the antibiotics was changed in a concentration-dependent manner, and the ΦEcSw susceptibility to antibiotics was determined. The kanamycin and chloramphenicol inhibited the titre of phage, but ampicillin did not show phage inhibition. Though the kanamycin and chloramphenicol controlled the growth of Sw1 in a concentration-dependent manner, the ampicillin did not due to the resistance. The combined activity of the ΦEcSw with antibiotics (kanamycin and chloramphenicol) compared with the antibiotics alone showed significant lytic activity p < .001). In addition, phage-based therapy was evaluated for controlling the multidrug-resistant E. coli Sw1 and E. coli O157:H7 in zebrafish and BALB/c mice, respectively. Our results provide novel advantages of phage therapy and phage-antibiotic therapy to control antibiotic-resistant bacteria.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli O157/efectos de los fármacos , Terapia de Fagos/veterinaria , Enfermedades de los Roedores/tratamiento farmacológico , Ampicilina/uso terapéutico , Animales , Bacteriófagos/fisiología , Cloranfenicol/uso terapéutico , Terapia Combinada , Infecciones por Escherichia coli/veterinaria , Kanamicina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Pez Cebra
13.
Virus Res ; 220: 129-35, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27130629

RESUMEN

In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1ß) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Pollos/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/administración & dosificación , Animales , Pollos/virología , Chlorocebus aethiops , Expresión Génica , Inmunización , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-1beta/biosíntesis , Interleucina-1beta/inmunología , Metapneumovirus/efectos de los fármacos , Metapneumovirus/crecimiento & desarrollo , Metapneumovirus/inmunología , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/prevención & control , Infecciones por Paramyxoviridae/virología , Plásmidos/química , Plásmidos/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Células Vero , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
14.
Mol Cell Probes ; 29(3): 151-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25805216

RESUMEN

In this study, multi-drug resistant Escherichia coli Sw1 (E. coli Sw1) and active lytic phage EcSw was isolated from feces samples of Sus scrofa domesticus (piglet) suffering from diarrhea. Transmission electron microscopy (TEM) indicated that isolated EcSw belongs to the Myoviridae family with an icosahedral head (80 ± 4) and a long tail (180 ± 5 nm). The EcSw phage genome size was estimated to be approximately 75 Kb of double-stranded DNA (dsDNA). Phage dynamic studies show that the latent period and burst size of EcSw were approximately 20 min and 28 PFU per cell, respectively. Interestingly, the EcSw phage can tolerate a wide range of environmental conditions, such as temperature, pH and ions (Ca(2+) and Mg(2+)). Furthermore, genome sequence analysis revealed that the lytic genes of the EcSw phage are notably similar to those of enterobacteria phages. In addition, phage-antibiotic synergy has notable effects compared with the effects of phages or antibiotics alone. Inhibition of E. coli Sw1 and 0157:H7 strains showed that the limitations of host specificity and infectivity of EcSw. Even though, it has considerable potential for phage therapy for handling the problem of the emergence of multidrug resistant pathogens.


Asunto(s)
Terapia Biológica , Myoviridae/metabolismo , Sus scrofa/virología , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/virología , Genoma Viral , Especificidad del Huésped/genética , Concentración de Iones de Hidrógeno , Metales , Viabilidad Microbiana , Microscopía Electrónica de Transmisión , Myoviridae/genética , Myoviridae/patogenicidad , Análisis de Secuencia de ADN , Sus scrofa/microbiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...