Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Investig ; 10: 2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742283

RESUMEN

Background: Our earlier work has shown that a unique stem cell-based vaccine that comprises of murine embryonic stem cells (ESCs) and murine fibroblasts expressing the immunostimulant granulocyte-macrophage colony stimulating factor (GM-CSF) successfully protects mice from the outgrowth of an implantable form of murine lung cancer. The use of live ESCs raises the potential risks of inducing teratomas and autoimmunity. We have attempted to improve the safety and utility of this prophylactic vaccine by employing exosomes derived from murine ESCs engineered to produce GM-CSF (ES-exo/GM-CSF vaccine). Methods: We have previously reported that ES-exo/GM-CSF immunization does protect mice from the outgrowth of an implantable form of murine lung cancer. Here, we have investigated the cancer prevention efficacy of ES-exo/GM-CSF vaccine in an experimental metastasis model of murine lung cancer, in which Lewis lung carcinoma (LLC) cells were administered into female C57BL/6 mice (8 weeks of age) through tail vein injection and subsequently LLC tumors were established in lungs. Results: Our objective is to test the anti-cancer efficacy of ES-exo/GM-CSF vaccine in a mouse model of metastatic lung cancer. Our studies indicate that vaccination of mice with ES-exo/GM-CSF vaccine inhibited the growth of metastatic lung tumors. ES-exo/GM-CSF vactionation reduced lung tumor burden from 1.86% in non-vaccinated, LLC-challenged mice to 0.036% in corresponding vacinnated mice. Importantly, control exosomes without GM-CSF failed to provide protection against metastasized pulmonary tumors. The efficacy of ES-exo/GM-CSF vaccination was associated with a decrease in the frequencies of tumor-infiltrating immunosuppressive immune cells, including T regulatory cells, myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages, as well as an increase in effector cytokine production from intra-tumoral CD8+ T cells. Conclusions: Overall, our research provides a novel strategy for developing a cell-free prophylactic vaccine against lung tumors.

2.
J Vis Exp ; (177)2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34842232

RESUMEN

Embryonic stem cells (ESCs) are pluripotent stem cells capable of self-renewal and differentiation into all types of embryonic cells. Like many other cell types, ESCs release small membrane vesicles, such as exosomes, to the extracellular environment. Exosomes serve as essential mediators of intercellular communication and play a basic role in many (patho)physiological processes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) functions as a cytokine to modulate the immune response. The presence of GM-CSF in exosomes has the potential to boost their immune-regulatory function. Here, GM-CSF was stably overexpressed in the murine ESC cell line ES-D3. A protocol was developed to isolate high-quality exosome-enriched extracellular vesicles (EVs) from ES-D3 cells overexpressing GM-CSF. Isolated exosome-enriched EVs were characterized by a variety of experimental approaches. Importantly, significant amounts of GM-CSF were found to be present in exosome-enriched EVs. Overall, GM-CSF-bearing exosome-enriched EVs from ESCs might function as cell-free vesicles to exert their immune-regulatory activities.


Asunto(s)
Exosomas , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Diferenciación Celular , Citocinas/metabolismo , Células Madre Embrionarias/metabolismo , Exosomas/metabolismo , Ratones
3.
Vaccines (Basel) ; 9(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207062

RESUMEN

The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.

4.
Sci Rep ; 11(1): 10435, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001932

RESUMEN

Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.


Asunto(s)
Estenosis Carotídea/complicaciones , Hemo-Oxigenasa 1/metabolismo , Hemo/metabolismo , Hemorragia/patología , Placa Aterosclerótica/complicaciones , Biopsia , Estenosis Carotídea/sangre , Línea Celular , Estrés del Retículo Endoplásmico , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/patología , Técnicas de Silenciamiento del Gen , Voluntarios Sanos , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/genética , Hemólisis , Hemorragia/etiología , Humanos , Placa Aterosclerótica/sangre
5.
Data Brief ; 27: 104624, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31692674

RESUMEN

Exposure to ionizing radiation associated with highly energetic and charged heavy particles is an inherent risk astronauts face in long duration space missions. We have previously considered the transcriptional effects that three levels of radiation (0.3 Gy, 1.5 Gy, and 3.0 Gy) have at an immediate time point (1 hr) post-exposure [1]. Our analysis of these results suggest effects on transcript levels that could be modulated at lower radiation doses [2]. In addition, a time dependent effect is likely to be present. Therefore, in order to develop a lab-on-a-chip approach for detection of radiation exposure in terms of both radiation level and time since exposure, we developed a time- and dose-course study to determine appropriate sensitive and specific transcript biomarkers that are detectable in blood samples. The data described herein was developed from a study measuring exposure to 0.15 Gy, 0.30 Gy, and 1.5 Gy of radiation at 1 hr, 2 hr, and 6 hr post-exposure using Affymetrix® GeneChip® PrimeView™ microarrays. This report includes raw gene expression data files from the resulting microarray experiments representing typical radiation exposure levels an astronaut may experience as part of a long duration space mission. The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE63952.

6.
Oncoimmunology ; 8(3): 1561119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723593

RESUMEN

The antigenic similarity between embryos and tumors has raised the idea of using embryonic material as a preventative vaccine against neoplastic disease. Indeed, we have previously reported that a vaccine comprises allogeneic murine embryonic stem cells (ESCs) and murine fibroblasts expressing GM-CSF (to amplify immune responses) successfully blocks the outgrowth of an implantable cancer (Lewis lung carcinoma; LLC) and lung tumors generated in mice using a combination of a mutagen followed by chronic pulmonary inflammation. However, such a vaccine is obviously impractical for application to humans. The use of fibroblasts to generate GM-CSF is needlessly complicated, and intact whole ESCs carry the hazard of generating embryomas/teratomas. Here, we report the successful application of an alternative prophylactic vaccine comprises exosomes derived from murine ESCs engineered to produce GM-CSF. Vaccination of mice with these exosomes significantly slowed or blocked the outgrowth of implanted LLC while control exosomes lacking GM-CSF were ineffective. Examination of tumor-infiltrating immune cells from mice vaccinated with the GM-CSF-expressing exosomes showed robust tumor-reactive CD8+ T effector responses, Th1 cytokine responses, and higher CD8+ T effector/CD4+CD25+Foxp3+ T regulatory cell ratio in the tumors. We conclude that a similar vaccine derived from GM-CSF- expressing human ESCs can be employed as a preventative vaccine for humans with an increased risk of developing cancer.

8.
Genom Data ; 7: 82-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981369

RESUMEN

Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

9.
J Cell Mol Med ; 20(2): 217-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26499096

RESUMEN

Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using ß-glycerophosphate with activated vitamin D3 , or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast-like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H-1,2-Dithiole-3-thione was able to inhibit the SMC transition into osteoblast-like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.


Asunto(s)
Ferritinas/metabolismo , Miocitos del Músculo Liso/fisiología , Osteoblastos/fisiología , Fosfatasa Alcalina/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/fisiología , Calcitriol/metabolismo , Calcio/metabolismo , Células Cultivadas , Colecalciferol/metabolismo , Ergocalciferoles/metabolismo , Glicerofosfatos/farmacología , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Fosfatos/metabolismo , Tionas/farmacología , Tiofenos/farmacología , Calcificación Vascular/metabolismo , Calcificación Vascular/fisiopatología
10.
Free Radic Biol Med ; 89: 248-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26409224

RESUMEN

Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.


Asunto(s)
Ventrículos Cardíacos/patología , Hemo/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/patología , Quinasa de Cadena Ligera de Miosina/metabolismo , Citoesqueleto de Actina , Actinina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Filaminas/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Immunoblotting , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidantes/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...