Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 12(39): 8112-8123, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27722747

RESUMEN

In this study we investigate the structure-mechanical property relationships for nanostructured ionomer films containing ionically crosslinked core-shell polymer nanoparticles based on poly(n-butyl acrylate) (PBA). Whilst nanostructured ionomer films of core-shell nanoparticles have been previously shown to have good ductility [Soft Matter, 2014, 10, 4725], the modulus values were modest. Here, we used BA as the primary monomer to construct core-shell nanoparticles that provided films containing nanostructured polymers with much higher glass transition temperature (Tg) values. The core-shell nanoparticles were synthesised using BA, acrylonitrile (AN), methacrylic acid (MAA) and 1,4-butanediol diacrylate (BDDA). Nanostructured ionomer films were prepared by casting aqueous core-shell nanoparticle dispersions in which the shell -COOH groups were neutralised with KOH and ZnO. The film mechanical properties were studied using dynamic mechanical analysis and tensile stress-strain measurements. The use of BA-based nanoparticles increased the Tg values to close to room temperature which caused a strong dependence of the film mechanical properties on the AN content and extent of neutralisation of the -COOH groups. The Young's modulus values for the films ranged from 1.0 to 86.0 MPa. The latter is the highest modulus reported for cast films of nanostructured ionomer films prepared from core-shell nanoparticles. The films had good ductility with strain-at-break values of at least 200%. The mechanical properties of the films were successfully modelled using the isostrain model. From comparison with an earlier butadiene-based system this study demonstrates that the nature of the primary monomer used to construct the nanoparticles can profoundly change the film mechanical properties. The aqueous nanoparticle dispersion approach used here provides a simple and versatile method to prepare high modulus elastomer films with tuneable mechanical properties.

2.
Biomacromolecules ; 17(9): 2830-8, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27461341

RESUMEN

Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a range of (meth)acrylate copolymers which contain monomers reported to deliver bacterial resistance to surfaces. This optimization allows such monomers to be employed within novel coatings to reduce bacterial attachment to silicone urinary catheters. We show that the flexibility of copolymers can be tuned to match that of the silicone catheter substrate, by copolymerizing these polymers with a lower Tg monomer such that it passes the flexing fatigue tests as coatings upon catheters, that the homopolymers failed. Furthermore, the Tg values of the copolymers are shown to be readily estimated by the Fox equation. The bacterial resistance performance of these copolymers were typically found to be better than the neat silicone or a commercial silver containing hydrogel surface, when the monomer feed contained only 25 v% of the "hit" monomer. The method of initiation (either photo or thermal) was shown not to affect the bacterial resistance of the copolymers. Optimized synthesis conditions to ensure that the correct copolymer composition and to prevent the onset of gelation are detailed.


Asunto(s)
Acrilatos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana , Polímeros/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Sustancias Macromoleculares/química , Polimerizacion , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...