Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(2): 75, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725844

RESUMEN

Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.


Asunto(s)
Tejido Adiposo Blanco , COVID-19 , Animales , Cricetinae , Tejido Adiposo Blanco/patología , COVID-19/patología , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2
2.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35735979

RESUMEN

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacología , Triglicéridos/metabolismo , Hígado/metabolismo , Lipoproteínas VLDL/metabolismo
3.
Placenta ; 128: 112-115, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152345

RESUMEN

The APJ receptor and its two endogenous ligands, apelin and elabela, exert key roles in fetoplacental development. In adult, this system is altered by obesity but no data are available during pregnancy. We measured apelin and elabela levels in maternal plasma and cord blood and quantified placental gene expression of apelin, elabela and APJ in obese and non-obese mothers. We found that obesity reduced apelin level in cord blood without affecting maternal and cord blood elabela levels as well as placental gene expression of this system. Our data suggest that obesity alters fetal apelinemia in humans.


Asunto(s)
Obesidad Materna , Adulto , Apelina/genética , Apelina/metabolismo , Femenino , Sangre Fetal/metabolismo , Humanos , Obesidad/metabolismo , Placenta/metabolismo , Embarazo
4.
Food Chem ; 377: 131957, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34990954

RESUMEN

In human milk banks (HMBs), donor milk (DM) is commonly sterilized by Holder pasteurization (HoP). High hydrostatic pressure (HHP) processing is an innovative, alternative method for DM sterilization. We evaluated the impact of HHP processing on the concentration of seven metabolic milk hormones. Eight samples of raw DM were aliquoted. One aliquot was sterilized by HoP (62 °C for 30 min), and another was processed by HHP (350 MPa at 38 °C). Compared with raw DM, HoP milk displayed reduced concentrations of insulin, nesfatin-1, cortisol, leptin, apelin and GLP-1, though adiponectin levels were unchanged. HHP processing maintained the levels of insulin, nesfatin-1, cortisol and leptin at their initial levels in raw DM, reduced apelin and adiponectin levels, but increased GLP-1 level. Sterilization of DM by HHP thus preserves the main metabolic hormones in human milk, underlining the interest of this method for use in HMBs.


Asunto(s)
Bancos de Leche Humana , Leche Humana , Femenino , Humanos , Presión Hidrostática , Insulina , Pasteurización
5.
Int J Obes (Lond) ; 45(5): 1052-1060, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33594258

RESUMEN

OBJECTIVE: Recent evidence indicates that levels of breast milk (BM) hormones such as leptin can fluctuate with maternal adiposity, suggesting that BM hormones may signal maternal metabolic and nutritional environments to offspring during postnatal development. The hormone apelin is highly abundant in BM but its regulation during lactation is completely unknown. Here, we evaluated whether maternal obesity and overnutrition impacted BM apelin and leptin levels in clinical cohorts and lactating rats. METHODS: BM and plasma samples were collected from normal-weight and obese breastfeeding women, and from lactating rats fed a control or a high fat (HF) diet during lactation. Apelin and leptin levels were assayed by ELISA. Mammary gland (MG) apelin expression and its cellular localization in lactating rats was measured by quantitative RT-PCR and immunofluorescence, respectively. RESULTS: BM apelin levels increased with maternal BMI, whereas plasma apelin levels decreased. BM apelin was also positively correlated with maternal insulin and C-peptide levels. In rats, maternal HF feeding exclusively during lactation was sufficient to increase BM apelin levels and decrease its plasma concentration without changing body weight. In contrast, BM leptin levels increased with maternal BMI in humans, but did not change with maternal HF feeding during lactation in rats. Apelin is highly expressed in the rat MG during lactation and was mainly localized to mammary myoepithelial cells. We found that MG apelin gene expression was up-regulated by maternal HF diet and positively correlated with BM apelin content and maternal insulinemia. CONCLUSIONS: Our study indicates that BM apelin levels increase with long- and short-term overnutrition, possibly via maternal hyperinsulinemia and transcriptional upregulation of MG apelin expression in myoepithelial cells. Apelin regulates many physiological processes, including energy metabolism, digestive function, and development. Further studies are needed to unravel the consequences of such changes in offspring development.


Asunto(s)
Apelina/análisis , Leche Humana/química , Obesidad Materna/epidemiología , Obesidad Materna/fisiopatología , Hipernutrición/fisiopatología , Animales , Lactancia Materna , Dieta Alta en Grasa , Femenino , Francia , Humanos , Lactancia , Leptina , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Wistar
6.
Nutrients ; 11(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817318

RESUMEN

Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.


Asunto(s)
Epigénesis Genética/genética , Fenómenos Fisiológicos Nutricionales del Lactante/genética , Obesidad Infantil/genética , Animales , Animales Recién Nacidos , Lactancia Materna , Reprogramación Celular/genética , Desarrollo Infantil , Metilación de ADN/genética , Metabolismo Energético/genética , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/genética
7.
Cytokine Growth Factor Rev ; 46: 45-53, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30910349

RESUMEN

Pregnancy is a dynamic and precisely organized process during which one or more baby develops. Embryonic development relies on the formation of the placenta, allowing nutrient and oxygen exchange between the mother and the fetus. Dysfunction of placental formation lead to pregnancy disorders such as preeclampsia (PE) with serious deleterious consequences for fetal and maternal health. Identifying factors involved in fetoplacental homeostasis could inform better diagnostic and therapeutic strategies for these pathological pregnancies. Here, we summarize actions of elabela, apelin and their common receptor APJ in the fetoplacental unit. Studies indicate that elabela is crucial for embryo cardiovascular system formation and early placental development, while apelin acts in mid/late gestation to modulate fetal angiogenesis and energy homeostasis. Most of these findings, drawn from animal models, indicate a key role of elabela/apelin-APJ system in the fetoplacental unit. This review also provides an overview of clinical studies investigating elabela/apelin-APJ system in pathological complicated pregnancies such as PE and gestational diabetes mellitus (GDM). While elabela-deficient mice display all the features of PE, current clinical studies show no difference in circulating elabela levels between PE and control patients which does not support a role in PE development. Conversely, apelin levels are increased during PE, but the use of apelin as an early PE marker remains to be fully investigated.


Asunto(s)
Apelina/metabolismo , Hormonas Peptídicas/metabolismo , Complicaciones del Embarazo/etiología , Embarazo , Animales , Apelina/genética , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Femenino , Humanos , Ratones , Hormonas Peptídicas/genética , Preeclampsia/etiología
8.
Int J Obes (Lond) ; 43(12): 2381-2393, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30622312

RESUMEN

OBJECTIVE: The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. METHODS: We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. RESULTS: Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. CONCLUSIONS: Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.


Asunto(s)
Tejido Adiposo Blanco , Dieta Alta en Grasa , Epigénesis Genética/genética , Lactancia/genética , Estearoil-CoA Desaturasa , Tejido Adiposo Blanco/química , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Animales Recién Nacidos , Peso Corporal/genética , Femenino , Grasa Intraabdominal/química , Grasa Intraabdominal/enzimología , Grasa Intraabdominal/metabolismo , Masculino , Leche/química , Ratas Wistar , Estearoil-CoA Desaturasa/análisis , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
9.
Atherosclerosis ; 277: 145-154, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30212683

RESUMEN

BACKGROUND AND AIMS: Progranulin is a circulating protein that modulates inflammation and is found in atherosclerotic lesions. Here we determined whether inflammatory cell-derived progranulin impacts atherosclerosis development. METHODS: Ldlr-/- mice were transplanted with bone marrow from wild-type (WT) or Grn-/- (progranulin KO) mice (referred to as Tx-WT and Tx-KO, respectively). RESULTS: After 10 weeks of high-fat diet feeding, both groups displayed similarly elevated plasma levels of cholesterol and triglycerides. Despite abundant circulating levels of progranulin, the size of atherosclerotic lesions in Tx-KO mice was increased by 47% in aortic roots and by 62% in whole aortas. Aortic root lesions in Tx-KO mice had increased macrophage content and larger necrotic cores, consistent with more advanced lesions. Progranulin staining was markedly reduced in the lesions of Tx-KO mice, indicating little or no uptake of circulating progranulin. Mechanistically, cultured progranulin-deficient macrophages exhibited increased lysosome-mediated exophagy of aggregated low-density lipoproteins resulting in increased cholesterol uptake and foam cell formation. CONCLUSIONS: We conclude that hematopoietic progranulin deficiency promotes diet-induced atherosclerosis in Ldlr-/- mice, possibly due to increased exophagy-mediated cholesterol uptake. Circulating progranulin was unable to prevent the increased lesion development, consistent with the importance of progranulin acting via cell-autonomous or local effects.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Granulinas/metabolismo , Macrófagos/metabolismo , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Trasplante de Médula Ósea , Células Cultivadas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Células Espumosas/metabolismo , Células Espumosas/patología , Predisposición Genética a la Enfermedad , Granulinas/deficiencia , Granulinas/genética , Lípidos/sangre , Lisosomas/metabolismo , Lisosomas/patología , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Fenotipo , Placa Aterosclerótica , Progranulinas , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal
10.
FASEB J ; 32(5): 2768-2778, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29295860

RESUMEN

According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates program obesity later in life. White adipose tissue (WAT) has been the focus of developmental programming events, although underlying mechanisms remain elusive. In rodents, WAT development primarily occurs during lactation. We previously reported that adult rat offspring from dams fed a high-fat (HF) diet exhibited fat accumulation and decreased peroxisome proliferator-activated receptor γ (PPARγ) mRNA levels in WAT. We hypothesized that PPARγ down-regulation occurs via epigenetic malprogramming which takes place during adipogenesis. We therefore examined epigenetic modifications in the PPARγ1 and PPARγ2 promoters in perirenal (pWAT) and inguinal fat pads of HF offspring at weaning (postnatal d 21) and in adulthood. Postnatal d 21 is a period characterized by active epigenomic remodeling in the PPARγ2 promoter (DNA hypermethylation and depletion in active histone modification H3ac and H3K4me3) in pWAT, consistent with increased DNA methyltransferase and DNA methylation activities. Adult HF offspring exhibited sustained hypermethylation and histone modification H3ac of the PPARγ2 promoter in both deposits, correlated with persistent decreased PPARγ2 mRNA levels. Consistent with the DOHaD hypothesis, retained epigenetic marks provide a mechanistic basis for the cellular memory linking maternal obesity to a predisposition for later adiposity.-Lecoutre, S., Pourpe, C., Butruille, L., Marousez, L., Laborie, C., Guinez, C., Lesage, J., Vieau, D., Eeckhoute, J., Gabory, A., Oger, F., Eberlé, D., Breton, C. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications.


Asunto(s)
Tejido Adiposo/metabolismo , Metilación de ADN , Epigénesis Genética , Obesidad/metabolismo , PPAR gamma/biosíntesis , Regiones Promotoras Genéticas , Tejido Adiposo/patología , Adiposidad/genética , Animales , Femenino , Histonas/genética , Histonas/metabolismo , Masculino , Obesidad/genética , PPAR gamma/genética , Procesamiento Proteico-Postraduccional , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar
11.
Mol Metab ; 6(8): 922-930, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28752055

RESUMEN

OBJECTIVE: According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates predispose offspring to white adipose tissue (WAT) accumulation. In rodents, adipogenesis mainly develops during lactation. The mechanisms underlying the phenomenon known as developmental programming remain elusive. We previously reported that adult rat offspring from high-fat diet-fed dams (called HF) exhibited hypertrophic adipocyte, hyperleptinemia and increased leptin mRNA levels in a depot-specific manner. We hypothesized that leptin upregulation occurs via epigenetic malprogramming, which takes place early during development of WAT. METHODS: As a first step, we identified in silico two potential enhancers located upstream and downstream of the leptin transcription start site that exhibit strong dynamic epigenomic remodeling during adipocyte differentiation. We then focused on epigenetic modifications (methylation, hydroxymethylation, and histone modifications) of the promoter and the two potential enhancers regulating leptin gene expression in perirenal (pWAT) and inguinal (iWAT) fat pads of HF offspring during lactation (postnatal days 12 (PND12) and 21 (PND21)) and in adulthood. RESULTS: PND12 is an active period for epigenomic remodeling in both deposits especially in the upstream enhancer, consistent with leptin gene induction during adipogenesis. Unlike iWAT, some of these epigenetic marks were still observable in pWAT of weaned HF offspring. Retained marks were only visible in pWAT of 9-month-old HF rats that showed a persistent "expandable" phenotype. CONCLUSIONS: Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.


Asunto(s)
Epigénesis Genética , Leptina/genética , Obesidad/genética , Complicaciones del Embarazo/genética , Tejido Adiposo Blanco/metabolismo , Animales , Metilación de ADN , Femenino , Código de Histonas , Leptina/metabolismo , Masculino , Embarazo , Ratas , Ratas Wistar , Regulación hacia Arriba
12.
Cell Metab ; 23(4): 685-98, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27050305

RESUMEN

Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.


Asunto(s)
Tejido Adiposo/patología , Inflamación/complicaciones , Resistencia a la Insulina , Células Asesinas Naturales/patología , Macrófagos/patología , Obesidad/complicaciones , Tejido Adiposo/inmunología , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Inflamación/inmunología , Inflamación/patología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Obesidad/inmunología , Obesidad/patología
13.
J Endocrinol ; 230(1): 39-53, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27122310

RESUMEN

According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11ß-hydroxysteroid dehydrogenase type 1 (11ß-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner.


Asunto(s)
Tejido Adiposo/metabolismo , Lactancia/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Obesidad/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Aumento de Peso/fisiología , Animales , Peso Corporal , Corticosterona/sangre , Femenino , Intolerancia a la Glucosa/metabolismo , Hiperinsulinismo/metabolismo , Masculino , PPAR gamma/genética , PPAR gamma/metabolismo , Embarazo , Ratas , Factores Sexuales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
15.
Diabetes ; 65(3): 554-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26631739

RESUMEN

The adequate control of glucose homeostasis during both gestation and early postnatal life is crucial for the development of the fetoplacental unit and adaptive physiological responses at birth. Growing evidences indicate that apelin and its receptor, APJ, which are expressed across a wide range of tissues, exert important roles in glucose homeostasis in adults. However, little is known about the function of the apelinergic system during gestation. In this study, we evaluated the activity of this system in rats, the role of apelin in fetal and neonatal glucose homeostasis, and its modulation by maternal food restriction. We found that 1) the apelinergic system was expressed at the fetoplacental interface and in numerous fetal tissues, 2) ex vivo, the placenta released high amounts of apelin in late gestation, 3) intravenous apelin injection in mothers increased the transplacental transport of glucose, and 4) intraperitoneal apelin administration in neonates increased glucose uptake in lung and muscle. Maternal food restriction drastically reduced apelinemia in both mothers and growth-restricted fetuses and altered the expression of the apelinergic system at the fetoplacental interface. Together, our data demonstrate that apelin controls fetal and neonatal glucose homeostasis and is altered by fetal growth restriction induced by maternal undernutrition.


Asunto(s)
Glucemia/metabolismo , Retardo del Crecimiento Fetal/genética , Feto/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Desnutrición/metabolismo , Complicaciones del Embarazo/metabolismo , Animales , Animales Recién Nacidos , Apelina , Receptores de Apelina , Glucemia/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Femenino , Retardo del Crecimiento Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/genética , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Placenta/metabolismo , Embarazo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Cardiovasc Pharmacol ; 63(2): 132-143, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24508946

RESUMEN

FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure. We added FTY720 (0.3 mg·kg(-1)·d(-1)) to the drinking water of C57BL/6J mice. After ex vivo cardiac ischemia/reperfusion injury, these mice had significantly improved left ventricular (LV) developed pressure and reduced infarct size compared with controls. Subsequently, ApoeR61(h/h)/SRB1(-/-) mice fed a high-fat diet for 4 weeks were treated or not with oral FTY720 (0.05 mg·kg(-1)·d(-1)). This sharply reduced mortality (P < 0.02) and resulted in better LV function and less LV remodeling compared with controls without reducing hypercholesterolemia and atherosclerosis. Oral FTY720 reduced the number of blood lymphocytes and increased the percentage of CD4+Foxp3+ regulatory T cells (Tregs) in the circulation, spleen, and lymph nodes. FTY720-treated mice exhibited increased TGF-ß and reduced IFN-γ expression in the heart. Also, CD4 expression was increased and strongly correlated with molecules involved in natural Treg activity, such as TGF-ß and GITR. Our data suggest that long-term FTY720 treatment enhances LV function and increases longevity in mice with heart failure. These benefits resulted not from atheroprotection but from systemic immunosuppression and a moderate reduction of inflammation in the heart.


Asunto(s)
Apolipoproteínas E/genética , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Animales , Cardiotónicos/administración & dosificación , Cardiotónicos/farmacología , Enfermedad de la Arteria Coronaria/fisiopatología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod , Inmunosupresores/administración & dosificación , Inmunosupresores/farmacología , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Glicoles de Propileno/administración & dosificación , Esfingosina/administración & dosificación , Esfingosina/farmacología , Tasa de Supervivencia , Linfocitos T Reguladores/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
18.
Am J Pathol ; 183(6): 1981-1992, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24113453

RESUMEN

Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Regulación de la Expresión Génica/genética , Hiperglucemia , Lípidos/sangre , Macrófagos , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/sangre , Aterosclerosis/complicaciones , Aterosclerosis/genética , Aterosclerosis/patología , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Femenino , Hiperglucemia/sangre , Hiperglucemia/complicaciones , Hiperglucemia/genética , Hiperglucemia/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos
19.
Am J Physiol Endocrinol Metab ; 305(10): E1195-207, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24045869

RESUMEN

Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.


Asunto(s)
Tejido Adiposo/embriología , Tejido Adiposo/metabolismo , Fenómenos Fisiologicos de la Nutrición Prenatal/fisiología , Adulto , Animales , Peso al Nacer/genética , Peso al Nacer/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Obesidad/etiología , Obesidad/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética
20.
Diabetes ; 62(11): 3718-26, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23884883

RESUMEN

Metabolic inflammation may contribute to the pathogenesis of obesity and its comorbidities, including type 2 diabetes and cardiovascular disease. Previously, we showed that the actin-binding protein profilin-1 (pfn) plays a role in atherogenesis because pfn heterozygote mice (PfnHet) exhibited a significant reduction in atherosclerotic lesion burden and vascular inflammation. In the current study, we tested whether pfn haploinsufficiency would also limit diet-induced adipose tissue inflammation and insulin resistance (IR). First, we found that a high-fat diet (HFD) upregulated pfn expression in epididymal and subcutaneous white adipose tissue (WAT) but not in the liver or muscle of C57BL/6 mice compared with normal chow. Pfn expression in WAT correlated with F4/80, an established marker for mature macrophages. Of note, HFD elevated pfn protein levels in both stromal vascular cells and adipocytes of WAT. We also found that PfnHet were significantly protected from HFD-induced glucose intolerance observed in pfn wild-type mice. With HFD, PfnHet displayed blunted expression of systemic and WAT proinflammatory cytokines and decreased accumulation of adipose tissue macrophages, which were also preferentially biased toward an M2-like phenotype; this correlated with preserved frequency of regulatory T cells. Taken together, the findings indicate that pfn haploinsufficiency protects against diet-induced IR and inflammation by modulating WAT immune homeostasis.


Asunto(s)
Tejido Adiposo Blanco/inmunología , Intolerancia a la Glucosa/genética , Haploinsuficiencia , Inflamación/inmunología , Profilinas/genética , Grasa Subcutánea/inmunología , Tejido Adiposo Blanco/patología , Animales , Antígenos de Diferenciación/biosíntesis , Dieta Alta en Grasa , Homeostasis , Resistencia a la Insulina/fisiología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Profilinas/biosíntesis , Factor de Transcripción STAT3/metabolismo , Grasa Subcutánea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...