Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 405(6): 427-439, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38651266

RESUMEN

Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Aprendizaje Automático , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/metabolismo , Humanos , Fenotipo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Troponina T/metabolismo , Calcio/metabolismo
2.
Circ Res ; 133(2): e19-e46, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37313752

RESUMEN

BACKGROUND: Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS: We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS: We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS: Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Deficiencias de Hierro , Humanos , Miocitos Cardíacos/metabolismo , Mutación , Cardiomiopatía Dilatada/genética , Células Madre Pluripotentes Inducidas/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Hierro/metabolismo , Clatrina/genética , Clatrina/metabolismo , Clatrina/farmacología
3.
Basic Res Cardiol ; 117(1): 5, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35499658

RESUMEN

Dilated cardiomyopathy (DCM) is a major risk factor for heart failure and is associated with the development of life-threatening cardiac arrhythmias. Using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model harbouring a mutation in cardiac troponin T (R173W), we aim to examine the cellular basis of arrhythmogenesis in DCM patients with this mutation. iPSC from control (Ctrl) and DCM-TnT-R173W donors from the same family were differentiated into iPSC-CM and analysed through optical action potential (AP) recordings, simultaneous measurement of cytosolic calcium concentration ([Ca2+]i) and membrane currents and separately assayed using field stimulation to detect the threshold for AP- and [Ca2+]i-alternans development. AP duration was unaltered in TnT-R173W iPSC-CM. Nevertheless, TnT-R173W iPSC-CM showed a strikingly low stimulation threshold for AP- and [Ca2+]i-alternans. Myofilaments are known to play a role as intracellular Ca2+ buffers and here we show increased Ca2+ affinity of intracellular buffers in TnT-R173W cells, indicating increased myofilament sensitivity to Ca2+. Similarly, EMD57033, a myofilament Ca2+ sensitiser, replicated the abnormal [Ca2+]i dynamics observed in TnT-R173W samples and lowered the threshold for alternans development. In contrast, application of a Ca2+ desensitiser (blebbistatin) to TnT-R173W iPSC-CM was able to phenotypically rescue Ca2+ dynamics, normalising Ca2+ transient profile and minimising the occurrence of Ca2+ alternans at physiological frequencies. This finding suggests that increased Ca2+ buffering likely plays a major arrhythmogenic role in patients with DCM, specifically in those with mutations in cardiac troponin T. In addition, we propose that modulation of myofilament Ca2+ sensitivity could be an effective anti-arrhythmic target for pharmacological management of this disease.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Arritmias Cardíacas/genética , Calcio , Cardiomiopatía Dilatada/genética , Humanos , Miocitos Cardíacos , Troponina T/genética , Troponina T/farmacología
4.
Biol Chem ; 403(2): 131, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34958533
5.
FEBS Lett ; 595(20): 2544-2557, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482543

RESUMEN

We developed an integrated platform for analysis of parameterized data from human disease models. We report a non-negative blind deconvolution (NNBD) approach to quantify calcium (Ca2+ ) handling, beating force and contractility in human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) at the single-cell level. We employed CRISPR/Cas gene editing to introduce a dilated cardiomyopathy (DCM)-causing mutation in troponin T (TnT), TnT-R141W, into wild-type control iPSCs (MUT). The NNDB-based method enabled data parametrization, fitting and analysis in wild-type controls versus isogenic MUT iPSC-CMs. Of note, Cas9-edited TnT-R141W iPSC-CMs revealed significantly reduced beating force and prolonged contractile event duration. The NNBD-based platform provides an alternative framework for improved quantitation of molecular disease phenotypes and may contribute to the development of novel diagnostic tools.


Asunto(s)
Sistemas CRISPR-Cas , Cardiomiopatía Dilatada/patología , Edición Génica , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Miocitos Cardíacos/patología , Cardiomiopatía Dilatada/genética , Humanos , Mutación , Troponina T/genética
6.
Pflugers Arch ; 473(7): 1151-1165, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33206225

RESUMEN

Rare cardiovascular diseases (RCDs) refer to those cardiovascular diseases that display a low prevalence as well as morbidity. Due to the vast variety of underlying genetic mutations and the relatively low patient population, RCDs present additional challenges for diagnosis. Precision medicine may offer opportunities for designing patient-specific therapies in particular for carriers of variants with undetermined significance. Moreover, precision medicine strategies provide benefit to patients with "common" symptoms but carry in rare genetic variants. Induced pluripotent stem cells (iPSCs) present a state-of-the-art precision medicine approach which recently made contributions to the study of RCDs via patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Human iPSC-CMs are derived from a patient's somatic cells and thus recapitulate a personalized genomics background, serving as patient-specific disease models. In light of these advantages, iPSC-CMs evolved as an effective tool for modeling cardiac disease phenotypes and accurately evaluating the toxicity of potential therapeutic compounds. This review covers approaches for studying RCDs and iPSC-CM models generated so far for different RCDs, such as long QT syndrome (LQT), short QT syndrome (SQT), Brugada syndrome (BrS), arrhythmogenic right ventricular cardiomyopathy (ARVC), and other rare diseases accomplished by cardiac-related syndromes like Fabry disease (FD) and Marfan syndrome (MFS). This overview aims to aid better understanding of the utility of iPSC-CM models, their various features, and future prospects.


Asunto(s)
Enfermedades Cardiovasculares/patología , Células Madre Pluripotentes Inducidas/patología , Enfermedades Raras/patología , Animales , Humanos , Modelos Cardiovasculares , Miocitos Cardíacos/patología , Medicina de Precisión/métodos
7.
Sci Rep ; 10(1): 209, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937807

RESUMEN

The sarcomeric troponin-tropomyosin complex is a critical mediator of excitation-contraction coupling, sarcomeric stability and force generation. We previously reported that induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with a dilated cardiomyopathy (DCM) mutation, troponin T (TnT)-R173W, display sarcomere protein misalignment and impaired contractility. Yet it is not known how TnT mutation causes dysfunction of sarcomere microdomains and how these events contribute to misalignment of sarcomeric proteins in presence of DCM TnT-R173W. Using a human iPSC-CM model combined with CRISPR/Cas9-engineered isogenic controls, we uncovered that TnT-R173W destabilizes molecular interactions of troponin with tropomyosin, and limits binding of PKA to local sarcomere microdomains. This attenuates troponin phosphorylation and dysregulates local sarcomeric microdomains in DCM iPSC-CMs. Disrupted microdomain signaling impairs MYH7-mediated, AMPK-dependent sarcomere-cytoskeleton filament interactions and plasma membrane attachment. Small molecule-based activation of AMPK can restore TnT microdomain interactions, and partially recovers sarcomere protein misalignment as well as impaired contractility in DCM TnT-R173W iPSC-CMs. Our findings suggest a novel therapeutic direction targeting sarcomere- cytoskeleton interactions to induce sarcomere re-organization and contractile recovery in DCM.


Asunto(s)
Cardiomiopatía Dilatada/patología , Diferenciación Celular , Citoesqueleto/metabolismo , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/patología , Sarcómeros/patología , Troponina/química , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Acoplamiento Excitación-Contracción , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Troponina/metabolismo
8.
Biol Chem ; 402(1): 113-121, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544492

RESUMEN

We developed a new approach for combined analysis of calcium (Ca2+) handling and beating forces in contractile cardiomyocytes. We employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from dilated cardiomyopathy (DCM) patients carrying an inherited mutation in the sarcomeric protein troponin T (TnT), and isogenic TnT-KO iPSC-CMs generated via CRISPR/Cas9 gene editing. In these cells, Ca2+ handling as well as beating forces and -rates using single-cell atomic force microscopy (AFM) were assessed. We report impaired Ca2+ handling and reduced contractile force in DCM iPSC-CMs compared to healthy WT controls. TnT-KO iPSC-CMs display no contractile force or Ca2+ transients but generate Ca2+ sparks. We apply our analysis strategy to Ca2+ traces and AFM deflection recordings to reveal maximum rising rate, decay time, and duration of contraction with a multi-step background correction. Our method provides adaptive computing of signal peaks for different Ca2+ flux or force levels in iPSC-CMs, as well as analysis of Ca2+ sparks. Moreover, we report long-term measurements of contractile force dynamics on human iPSC-CMs. This approach enables deeper and more accurate profiling of disease-specific differences in cardiomyocyte contraction profiles using patient-derived iPSC-CMs.


Asunto(s)
Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/análisis , Humanos , Células Madre Pluripotentes Inducidas/patología , Microscopía de Fuerza Atómica , Miocitos Cardíacos/patología
9.
Circ Res ; 125(1): 90-103, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31104567

RESUMEN

RATIONALE: The immature presentation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is currently a challenge for their application in disease modeling, drug screening, and regenerative medicine. Long-term culture is known to achieve partial maturation of iPSC-CMs. However, little is known about the molecular signaling circuitries that govern functional changes, metabolic output, and cellular homeostasis during long-term culture of iPSC-CMs. OBJECTIVE: We aimed to identify and characterize critical signaling events that control functional and metabolic transitions of cardiac cells during developmental progression, as recapitulated by long-term culture of iPSC-CMs. METHODS AND RESULTS: We combined transcriptomic sequencing with pathway network mapping in iPSC-CMs that were cultured until a late time point, day 200, in comparison to a medium time point, day 90, and an early time point, day 30. Transcriptomic landscapes of long-term cultured iPSC-CMs allowed mapping of distinct metabolic stages during development of maturing iPSC-CMs. Temporally divergent control of mitochondrial metabolism was found to be regulated by cAMP/PKA (protein kinase A)- and proteasome-dependent signaling events. The PKA/proteasome-dependent signaling cascade was mediated downstream by Hsp90 (heat shock protein 90), which in turn modulated mitochondrial respiratory chain proteins and their metabolic output. During long-term culture, this circuitry was found to initiate upregulation of iPSC-CM metabolism, resulting in increased cell contractility that reached a maximum at the day 200 time point. CONCLUSIONS: Our results reveal a PKA/proteasome- and Hsp90-dependent signaling pathway that regulates mitochondrial respiratory chain proteins and determines cardiomyocyte energy production and functional output. These findings provide deeper insight into signaling circuitries governing metabolic homeostasis in iPSC-CMs during developmental progression.


Asunto(s)
Metabolismo Energético/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Ratones
10.
Nat Biomed Eng ; 2(2): 104-113, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29721363

RESUMEN

Stem-cell-based therapies hold considerable promise for regenerative medicine. However, acute donor-cell death within several weeks after cell delivery remains a critical hurdle for clinical translation. Co-transplantation of stem cells with pro-survival factors can improve cell engraftment, but this strategy has been hampered by the typically short half-lives of the factors and by the use of Matrigel and other scaffolds that are not chemically defined. Here, we report a collagen-dendrimer biomaterial crosslinked with pro-survival peptide analogues that adheres to the extracellular matrix and slowly releases the peptides, significantly prolonging stem cell survival in mouse models of ischaemic injury. The biomaterial can serve as a generic delivery system to improve functional outcomes in cell-replacement therapy.

11.
PLoS One ; 12(8): e0183874, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28850583

RESUMEN

Sex differences in the development of the normal heart and the prevalence of cardiomyopathies have been reported. The molecular basis of these differences remains unclear. Sex differences in the human heart might be related to patterns of gene expression. Recent studies have shown that sex specific differences in gene expression in tissues including the brain, kidney, skeletal muscle, and liver. Similar data is limited for the heart. Herein we address this issue by analyzing donor and post-mortem adult human heart samples originating from 46 control individuals to study whole-genome gene expression in the human left ventricle. Using data from the genotype tissue expression (GTEx) project, we compared the transcriptome expression profiles of male and female hearts. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. The majority of differentially expressed autosomal genes were those involved in the regulation of inflammation, which has been found to be an important contributor to left ventricular remodeling. Specifically, genes on autosomal chromosomes encoding chemokines with inflammatory functions (e.g. CCL4, CX3CL1, TNFAIP3) and a gene that regulates adhesion of immune cells to the endothelium (e.g., VCAM1) were identified with sex-specific expression levels. This study underlines the relevance of sex as an important modifier of cardiac gene expression. These results have important implications in the understanding of the differences in the physiology of the male and female heart transcriptome and how they may lead to different sex specific difference in human cardiac health and its control.


Asunto(s)
Expresión Génica , Miocardio/metabolismo , Donantes de Tejidos , Transcriptoma , Adulto , Anciano , Quimiocinas/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Caracteres Sexuales
12.
Circ Res ; 121(6): e22-e36, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28743804

RESUMEN

RATIONALE: Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. OBJECTIVE: To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. METHODS AND RESULTS: Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. CONCLUSIONS: This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Animales , Línea Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Comunicación Paracrina , Trasplante de Células Madre/métodos
13.
J Am Coll Cardiol ; 68(19): 2086-2096, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27810048

RESUMEN

BACKGROUND: Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder. OBJECTIVES: The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs. RESULTS: BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca2+) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca2+ transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression. CONCLUSIONS: Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca2+ handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.


Asunto(s)
Síndrome de Brugada/genética , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/genética , ARN/genética , Adolescente , Adulto , Síndrome de Brugada/metabolismo , Síndrome de Brugada/patología , Diferenciación Celular , Electrocardiografía , Genotipo , Sistema de Conducción Cardíaco/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/biosíntesis , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto Joven
14.
Nat Cell Biol ; 18(10): 1031-42, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27642787

RESUMEN

Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-ß) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-ß signalling. TBX20 regulates the expression of TGF-ß signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-ß signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.


Asunto(s)
Cardiomiopatías/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cardiomiopatías/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Mutación/genética , Fenotipo , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
15.
Sci Rep ; 6: 32669, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609119

RESUMEN

Cardiovascular disease is a leading cause of morbidity in rheumatoid arthritis (RA) patients. This study aimed to generate and characterise cardiomyocytes from induced pluripotent stem cells (iPSCs) of RA patients. Fibroblast-like synoviocytes (FLSs) from patients with RA and osteoarthritis (OA) were successfully reprogrammed into RA-iPSCs and OA-iPSCs, respectively. The pluripotency of iPSCs was confirmed by quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining. Established iPSCs were differentiated into cardiomyocytes using a small molecule-based monolayer differentiation protocol. Within 12 days of cardiac differentiation from patient-specific and control-iPSCs, spontaneously beating cardiomyocytes (iPSC-CMs) were observed. All iPSC-CMs exhibited a reliable sarcomeric structure stained with antibodies against cardiac markers and similar expression profiles of cardiac-specific genes. Intracellular calcium signalling was recorded to compare calcium-handling properties among cardiomyocytes differentiated from the three groups of iPSCs. RA-iPSC-CMs had a lower amplitude and a shorter duration of calcium transients than the control groups. Peak tangential stress and the maximum contractile rate were also decreased in RA-iPSC-CMs, suggesting that contractility was reduced. This study demonstrates the successful generation of functional cardiomyocytes from pathogenic synovial cells in RA patients through iPSC reprogramming. Research using RA-iPSC-CMs might provide an opportunity to investigate the pathophysiology of cardiac involvement in RA.


Asunto(s)
Artritis Reumatoide/patología , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/patología , Sinoviocitos/patología , Diferenciación Celular , Humanos
16.
Nat Med ; 22(5): 547-56, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27089514

RESUMEN

Doxorubicin is an anthracycline chemotherapy agent effective in treating a wide range of malignancies, but it causes a dose-related cardiotoxicity that can lead to heart failure in a subset of patients. At present, it is not possible to predict which patients will be affected by doxorubicin-induced cardiotoxicity (DIC). Here we demonstrate that patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can recapitulate the predilection to DIC of individual patients at the cellular level. hiPSC-CMs derived from individuals with breast cancer who experienced DIC were consistently more sensitive to doxorubicin toxicity than hiPSC-CMs from patients who did not experience DIC, with decreased cell viability, impaired mitochondrial and metabolic function, impaired calcium handling, decreased antioxidant pathway activity, and increased reactive oxygen species production. Taken together, our data indicate that hiPSC-CMs are a suitable platform to identify and characterize the genetic basis and molecular mechanisms of DIC.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Insuficiencia Cardíaca/inducido químicamente , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adulto , Anciano , Antibióticos Antineoplásicos/efectos adversos , Calcio/metabolismo , Cardiotoxicidad/genética , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Susceptibilidad a Enfermedades , Doxorrubicina/efectos adversos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Insuficiencia Cardíaca/genética , Humanos , Células Madre Pluripotentes Inducidas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Persona de Mediana Edad , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
17.
Stem Cell Reports ; 6(2): 176-87, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26777057

RESUMEN

The use of cells derived from pluripotent stem cells (PSCs) for regenerative therapies confers a considerable risk for neoplastic growth and teratoma formation. Preclinical and clinical assessment of such therapies will require suitable monitoring strategies to understand and mitigate these risks. Here we generated human-induced pluripotent stem cells (iPSCs), selected clones that continued to express reprogramming factors after differentiation into cardiomyocytes, and transplanted these cardiomyocytes into immunocompromised rat hearts post-myocardial infarction. We compared magnetic resonance imaging (MRI), cardiac ultrasound, and serum biomarkers for their ability to delineate teratoma formation and growth. MRI enabled the detection of teratomas with a volume >8 mm(3). A combination of three plasma biomarkers (CEA, AFP, and HCG) was able to detect teratomas with a volume >17 mm(3) and with a sensitivity of more than 87%. Based on our findings, a combination of serum biomarkers with MRI screening may offer the highest sensitivity for teratoma detection and tracking.


Asunto(s)
Biomarcadores de Tumor/sangre , Imagen por Resonancia Magnética/métodos , Células Madre Pluripotentes/patología , Teratoma/sangre , Teratoma/diagnóstico , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Gadolinio , Corazón/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/patología , Lentivirus/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/trasplante , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Ratas Desnudas , Teratoma/irrigación sanguínea , Carga Tumoral/efectos de los fármacos
18.
Circulation ; 132(8): 762-771, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26304668

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (iPSCs) are attractive candidates for therapeutic use, with the potential to replace deficient cells and to improve functional recovery in injury or disease settings. Here, we test the hypothesis that human iPSC-derived cardiomyocytes (iPSC-CMs) can secrete cytokines as a molecular basis to attenuate adverse cardiac remodeling after myocardial infarction. METHODS AND RESULTS: Human iPSCs were generated from skin fibroblasts and differentiated in vitro with a small molecule-based protocol. Troponin(+) iPSC-CMs were confirmed by immunohistochemistry, quantitative polymerase chain reaction, fluorescence-activated cell sorting, and electrophysiological measurements. Afterward, 2×10(6) iPSC-CMs derived from a cell line transduced with a vector expressing firefly luciferase and green fluorescent protein were transplanted into adult NOD/SCID mice with acute left anterior descending artery ligation. Control animals received PBS injection. Bioluminescence imaging showed limited engraftment on transplantation into ischemic myocardium. However, magnetic resonance imaging of animals transplanted with iPSC-CMs showed significant functional improvement and attenuated cardiac remodeling compared with PBS-treated control animals. To understand the underlying molecular mechanism, microfluidic single-cell profiling of harvested iPSC-CMs, laser capture microdissection of host myocardium, and in vitro ischemia stimulation were used to demonstrate that the iPSC-CMs could release significant levels of proangiogenic and antiapoptotic factors in the ischemic microenvironment. CONCLUSIONS: Transplantation of human iPSC-CMs into an acute mouse myocardial infarction model can improve left ventricular function and attenuate cardiac remodeling. Because of limited engraftment, most of the effects are possibly explained by paracrine activity of these cells.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Microfluídica/métodos , Infarto del Miocardio/terapia , Miocitos Cardíacos/fisiología , Análisis de la Célula Individual/métodos , Trasplante de Células Madre , Animales , Línea Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Endogámicos NOD , Ratones SCID , Infarto del Miocardio/patología , Distribución Aleatoria
19.
Circ Res ; 117(8): 720-30, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26291556

RESUMEN

RATIONALE: Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. OBJECTIVE: Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. METHODS AND RESULTS: We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. CONCLUSIONS: EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation.


Asunto(s)
Células Madre Embrionarias/trasplante , Supervivencia de Injerto , Trasplante de Corazón/métodos , Infarto del Miocardio/cirugía , Miocitos Cardíacos/trasplante , Músculos Papilares/trasplante , Ingeniería de Tejidos/métodos , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Supervivencia Celular , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Trasplante de Corazón/efectos adversos , Xenoinjertos , Humanos , Inmunosupresores/farmacología , Masculino , Contracción Miocárdica , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Músculos Papilares/inmunología , Músculos Papilares/metabolismo , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Ratas Desnudas , Ratas Sprague-Dawley , Volumen Sistólico , Factores de Tiempo , Transfección
20.
EMBO Mol Med ; 7(9): 1090-103, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26183451

RESUMEN

Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Transdiferenciación Celular , Miocitos Cardíacos/fisiología , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Células Madre/fisiología , Animales , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Modelos Animales de Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA