Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(4): e0285923, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415690

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains in vitro and in vivo. The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission. IMPORTANCE: The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment in vivo. The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Chlorocebus aethiops , Humanos , Células Vero , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo
2.
STAR Protoc ; 4(2): 102352, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37300825

RESUMEN

An inability to proliferate at high temperatures typically gives viruses an attenuated phenotype. Here, we present a protocol to obtain and isolate temperature-sensitive (TS) SARS-CoV-2 strains via 5-fluorouracile-induced mutagenesis. We describe steps for the induction of mutations in the wild-type virus and selection of TS clones. We then show how to identify the mutations associated with the TS phenotype, following forward and reverse genetics strategies. For complete details on the use and execution of this protocol, please refer to Yoshida et al. (2022).1.

3.
J Virol ; 97(2): e0163122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749078

RESUMEN

B19 virus (B19V) is a pathogenic human parvovirus that infects erythroid progenitor cells. Because there are limited in vitro culture systems to propagate this virus, little is known about the molecular mechanisms by which it propagates in cells. In this study, we introduced a HiBiT peptide tag into various loops of VP2 located on the surface of B19V particles and evaluated their ability to form virus-like particles (VLPs). Three independent sites were identified as permissive sites for peptide tag insertion without affecting VLP formation. When the HiBiT tag was introduced into B19V clones (pB19-M20) and transfected into a semipermissive erythroleukemia cell line (UT7/Epo-S1), HiBiT-dependent luciferase activities (HiBiT activities) increased depending on helicase activity of viral NS1. Furthermore, we used a GFP11 tag-split system to visualize VLPs in the GFP1-10-expressing live cells. Time-lapse imaging of green fluorescent protein (GFP)-labeled VLPs revealed that nuclear VLPs were translocated into the cytoplasm only after cell division, suggesting that the breakdown of the nuclear envelope during mitosis contributes to VLP nuclear export. Moreover, HiBiT activities of culture supernatants were dependent on the presence of a detergent, and the released VLPs were associated with extracellular vesicles, as observed under electron microscopy. Treatment with an antimitotic agent (nocodazole) enhanced the release of VLPs. These results suggest that the virions accumulated in the cytoplasm are constitutively released from the cell as membrane-coated vesicles. These properties are likely responsible for viral escape from host immune responses and enhance membrane fusion-mediated transmission. IMPORTANCE Parvovirus particles are expected to be applied as nanoparticles in drug delivery systems. However, little is known about how nuclear-assembled B19 virus (B19V) virions are released from host cells. This study provides evidence of mitosis-dependent nuclear export of B19V and extracellular vesicle-mediated virion release. Moreover, this study provides methods for modifying particle surfaces with various exogenous factors and contributes to the development of fine nanoparticles with novel valuable functions. The pB19-M20 plasmid expressing HiBiT-tagged VP2 is a novel tool to easily quantify VP2 expression. Furthermore, this system can be applied in high-throughput screening of reagents that affect VP2 expression, which might be associated with viral propagation.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus B19 Humano , Humanos , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Parvovirus B19 Humano/metabolismo , Péptidos/metabolismo , Partículas Similares a Virus Artificiales
4.
Front Biosci (Landmark Ed) ; 28(1): 15, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36722281

RESUMEN

BACKGROUND: Clostridium perfringens and Shiga toxin (Stx)-producing Escherichia coli (STEC) are common causes of food poisoning. We previously demonstrated the efficacy of Stx2B-C-CPE, a fusion protein of the C-terminal region of C. perfringens enterotoxin (C-CPE) and Shiga toxin 2 B subunit (Stx2B), as a bivalent vaccine against C. perfringens and STEC infections. METHODS: Here, we applied an E. coli expression system and Triton X-114 phase separation to prepare tag- and endotoxin-free Stx2B-C-CPE for use in vaccine formulations. RESULTS: As we anticipated, endotoxin removal from the purified antigen reduced both Stx2B- and C-CPE-specific IgG antibody responses in subcutaneously immunized mice, suggesting that endotoxin contamination influences the immunological assessment of Stx2B-C-CPE. However, the combined use of aluminum and Alcaligenes lipid A adjuvants improved IgG antibody responses to the injected antigen, thus indicating the suitability of purified Stx2B-C-CPE for vaccine formulation. CONCLUSIONS: Our current findings provide important knowledge regarding the design of an effective commercial Stx2B-C-CPE vaccine.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Vacunas , Animales , Ratones , Clostridium perfringens , Escherichia coli , Adyuvantes Inmunológicos , Enfermedades Transmitidas por los Alimentos/prevención & control , Enterotoxinas , Inmunoglobulina G
5.
Sci Rep ; 13(1): 1753, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720982

RESUMEN

Proteases play critical roles in various biological processes, including apoptosis and viral infection. Several protease biosensors have been developed; however, obtaining a reliable signal from a very low level of endogenous protease activity remains a challenge. In this study, we developed a highly sensitive protease biosensor, named FlipNanoLuc, based on the Oplophorus gracilirostris NanoLuc luciferase. The flipped ß-strand was restored by protease activation and cleavage, resulting in the reconstitution of luciferase and enzymatic activity. By making several modifications, such as introducing NanoBiT technology and CL1-PEST1 degradation tag, the FlipNanoLuc-based protease biosensor system achieved more than 500-fold luminescence increase in the corresponding protease-overexpressing cells. We demonstrated that the FlipNanoLuc-based caspase sensor can be utilized for the detection of staurosporine-induced apoptosis with sixfold increase in luminescence. Furthermore, we also demonstrated that the FlipNanoLuc-based coronavirus 3CL-protease sensor can be used to detect human coronavirus OC43 with tenfold increase in luminescence and severe acute respiratory syndrome-coronavirus-2 infections with 20-fold increase in luminescence by introducing the stem-loop 1 sequence to prevent the virus inducing global translational shutdown.


Asunto(s)
Apoptosis , Técnicas Biosensibles , COVID-19 , Péptido Hidrolasas , Humanos , Caspasas , COVID-19/diagnóstico , Luciferasas , SARS-CoV-2
6.
iScience ; 25(11): 105412, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36320329

RESUMEN

Live-attenuated vaccines are generally highly effective. Here, we aimed to develop one against SARS-CoV-2, based on the identification of three types of temperature-sensitive (TS) strains with mutations in nonstructural proteins (nsp), impaired proliferation at 37°C-39°C, and the capacity to induce protective immunity in Syrian hamsters. To develop a live-attenuated vaccine, we generated a virus that combined all these TS-associated mutations (rTS-all), which showed a robust TS phenotype in vitro and high attenuation in vivo. The vaccine induced an effective cross-reactive immune response and protected hamsters against homologous or heterologous viral challenges. Importantly, rTS-all rarely reverted to the wild-type phenotype. By combining these mutations with an Omicron spike protein to construct a recombinant virus, protection against the Omicron strain was obtained. We show that immediate and effective live-attenuated vaccine candidates against SARS-CoV-2 variants may be developed using rTS-all as a backbone to incorporate the spike protein of the variants.

7.
Vaccine ; 40(42): 6100-6106, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36114131

RESUMEN

Parvovirus B19 (B19) belongs to the Erythroparvovirus genus and is known to cause the fifth disease in children. Primary infection of pregnant women is associated with a high risk of hydrops fetalis and stillbirth due to severe fetal anemia. Virus-like particle (VLP) vaccine candidates for B19 have been developed, although none have been approved so far. The B19 phospholipase A2 domain (B19 PLA2), located in the VP1 unique region, is believed to be associated with adverse inflammatory reactions, and previous effective attempts to improve this vaccine modality inserted a mutation to impair the PLA2 activity of VLPs. In this study, we designed VLPs with a deletion mutant of PLA2 (⊿PLA2 B19 VLP), devoid of PLA2 activity, and confirmed their immunogenicity and safe use in vivo. These results were supported by the lack of histological inflammatory reactions at the site of immunization or the production of IL-6 in ⊿PLA2 B19 VLP-immunized mice, that were observed in mice immunized with B19 VLPs. CD4+ T cells from mice vaccinated with VLPs and B19-seropositive human samples were not activated by B19 PLA2 stimulation, suggesting that the B19 PLA2 domain does not constitute a major CD4+ T cell epitope. Most importantly, the ⊿PLA2 B19 VLPs induced neutralizing antibodies against B19, in levels similar to those found in B19-seropositive human samples, indicating that they could be used as a safe and effective vaccine candidate against B19.


Asunto(s)
Parvovirus B19 Humano , Vacunas de Partículas Similares a Virus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Niño , Epítopos de Linfocito T , Femenino , Humanos , Interleucina-6 , Ratones , Parvovirus B19 Humano/genética , Fosfolipasas A2/genética , Embarazo
8.
Vaccine ; 39(36): 5146-5152, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34340860

RESUMEN

BACKGROUND: Parvovirus B19 (B19) is a well-known cause of fifth disease in children, but infection during pregnancy may cause hydrops fetalis and stillbirth. The receptor-binding domain (RBD) of the VP1 unique capsid plays a pivotal role in infection. Here, we aimed to improve the immunogenicity of an RBD-based vaccine by genetically fusing it with Streptococcus pneumoniae surface protein A (PspA). METHODS: Mice were intramuscularly injected with RBD-based vaccines. Antigen-specific antibodies and neutralizing activity against B19 were measured. Protective immunity against S. pneumoniae was evaluated by monitoring the survival of mice nasally challenged with bacteria and determining antigen-specific T cell activation in splenic cells. RESULTS: RBD alone failed to generate neutralizing antibodies against B19, but fusion with PspA induced higher levels of neutralizing IgG compared to B19 virus-like particles. Furthermore, a comparable level of PspA-specific IgG was induced by RBD-PspA and PspA alone, which was sufficient to protect mice against pneumococcal infection. Stimulation with PspA, but not RBD, induced cytokine production in splenic cells from mice immunized with RBD-PspA, suggesting that PspA-specific T cells supported immunoglobulin class switching of both RBD- and PspA-specific B cells. CONCLUSIONS: RBD-PspA should be an effective bivalent vaccine against B19 and S. pneumoniae infections.


Asunto(s)
Parvovirus B19 Humano , Infecciones Neumocócicas , Animales , Anticuerpos Antibacterianos , Proteínas Bacterianas/genética , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Receptores Virales , Streptococcus pneumoniae
9.
Vaccine ; 39(39): 5719-5726, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426024

RESUMEN

In an effort to control the COVID-19 pandemic, large-scale vaccination is being implemented in various countries using anti-SARS-CoV-2 vaccines based on mRNAs, adenovirus vectors, and inactivated viruses. However, there are concerns regarding adverse effects, such as the induction of fever attributed to mRNA vaccines and pre-existing immunity against adenovirus vectored vaccines or their possible involvement in the development of thrombosis. The induction of antibodies against the adenovirus vector itself constitutes another hindrance, rendering boosting vaccinations ineffective. Additionally, it has been questioned whether inactivated vaccines that predominantly induce humoral immunity are effective against newly arising variants, as some isolated strains were found to be resistant to the serum from COVID-19-recovered patients. Although the number of vaccinated people is steadily increasing on a global scale, it is still necessary to develop vaccines to address the difficulties and concerns mentioned above. Among the various vaccine modalities, live attenuated vaccines have been considered the most effective, since they closely replicate a natural infection without the burden of the disease. In our attempt to provide an additional option to the repertoire of COVID-19 vaccines, we succeeded in isolating temperature-sensitive strains with unique phenotypes that could serve as seeds for a live attenuated vaccine. In this review article, we summarize the characteristics of the currently approved SARS-CoV-2 vaccines and discuss their advantages and disadvantages. In particular, we focus on the novel temperature-sensitive variants of SARS-CoV-2 that we have recently isolated, and their potential application as live-attenuated vaccines. Based on a thorough evaluation of the different vaccine modalities, we argue that it is important to optimize usage not only based on efficacy, but also on the phases of the pandemic. Our findings can be used to inform vaccination practices and improve global recovery from the COVID-19 pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Vacunas Atenuadas
10.
Vaccine ; 39(22): 2976-2982, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33926749

RESUMEN

In the activation of cell-mediated adaptive immune responses that play major roles in the elimination of virus-infected or tumor cells, it is important that dendritic cells present antigen peptides on major histocompatibility complex (MHC) class I molecules and activate pathogen-specific cytotoxic T lymphocytes (CTL). As exogenous peptide antigens are generally presented on MHC class II but not class I, the development of a method for exogenous antigen delivery that facilitates MHC class I presentation is necessary for a potentially effective vaccine that is expected to provoke cell-mediated adaptive immune responses. Here, we developed extracellular vesicles that incorporate antigenic proteins by utilizing endosomal sorting complexes required for transport (ESCRT)-mediated vesicle formation pathway. Furthermore, we proved that these vesicles could deliver their contents to the cytoplasm of dendritic cells and activate antigen-specific CTLs. These technologies could be applied to the development of novel CTL-inducing peptide vaccines.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Vesículas Extracelulares , Presentación de Antígeno , Células Dendríticas , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase II , Péptidos , Linfocitos T Citotóxicos
11.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087468

RESUMEN

Species A rotaviruses (RVs) are a leading cause of severe acute gastroenteritis in infants and children younger than 5 years. Currently available RV vaccines were adapted from wild-type RV strains by serial passage of cultured cells or by reassortment between human and animal RV strains. These traditional methods require large-scale screening and genotyping to obtain vaccine candidates. Reverse genetics is a tractable, rapid, and reproducible approach to generating recombinant RV vaccine candidates carrying any VP4 and VP7 genes that provide selected antigenicity. Here, we developed a vaccine platform by generating recombinant RVs carrying VP4 (P[4] and P[8]), VP7 (G1, G2, G3, G8, and G9), and/or VP6 genes cloned from human RV clinical samples using the simian RV SA11 strain (G3P[2]) as a backbone. Neutralization assays using monoclonal antibodies and murine antisera revealed that recombinant VP4 and VP7 monoreassortant viruses exhibited altered antigenicity. However, replication of VP4 monoreassortant viruses was severely impaired. Generation of recombinant RVs harboring a chimeric VP4 protein for SA11 and human RV gene components revealed that the VP8* fragment was responsible for efficient infectivity of recombinant RVs. Although this system must be improved because the yield of vaccine viruses directly affects vaccine manufacturing costs, reverse genetics requires less time than traditional methods and enables rapid production of safe and effective vaccine candidates.IMPORTANCE Although vaccines have reduced global RV-associated hospitalization and mortality over the past decade, the multisegmented genome of RVs allows reassortment of VP4 and VP7 genes from different RV species and strains. The evolutionary dynamics of novel RV genotypes and their constellations have led to great genomic and antigenic diversity. The reverse genetics system is a powerful tool for manipulating RV genes, thereby controlling viral antigenicity, growth capacity, and pathogenicity. Here, we generated recombinant simian RVs (strain SA11) carrying heterologous VP4 and VP7 genes cloned from clinical isolates and showed that VP4- or VP7-substituted chimeric viruses can be used for antigenic characterization of RV outer capsid proteins and as improved seed viruses for vaccine production.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Vacunas contra Rotavirus/genética , Rotavirus/inmunología , Rotavirus/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Reacciones Cruzadas , Genotipo , Humanos , Inmunogenicidad Vacunal , Ratones , Filogenia , Virus Reordenados/genética , Virus Reordenados/inmunología , Genética Inversa , Rotavirus/clasificación , Rotavirus/genética , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
12.
Vaccine ; 37(36): 5225-5232, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31358406

RESUMEN

BACKGROUND: Herpes zoster (HZ) is caused by reactivation of a latent varicella zoster virus (VZV). The potential to develop HZ increases with age due to waning of memory cell-mediated immunity (CMI), mainly the CD4 response. Therefore, VZV-CD4-memory T cells (CD4-M) count in blood could serve as a barometer for HZ protection. However, direct quantification of these cells is known to be difficult because they are few in number in the blood. We thus developed a method to measure the proliferation level of CD4-M cells responding to VZV antigen in whole blood culture. METHODS: Blood samples were collected from 32 children (2-15 years old) with or without a history of varicella infection, 18 young adults (28-45 years old), and 80 elderly (50-86 years old) with a history of varicella infection. The elderly group was vaccinated, and blood samples were taken 2 months and 1 year after VZV vaccination. Then, 1 mL of blood was mixed with VZV, diluted 1/10 in medium, and cultured. CD4-M cells were identified and measured by flow cytometry. RESULTS: There was distinct proliferation of CD3+CD4highCD45RA-RO+ (CD4high-M) cells specific to VZV antigen at day 9. The majority of CD4high-M cells had the effector memory phenotype CCR7- and was granzyme B-positive. CD4high-M cells were detected in blood culture from varicella-immune but not varicella-non-immune children. Meanwhile, a higher level of CD4high-M proliferation was observed in young adults than in the elderly. The CD4high-M proliferation level was boosted 2 months after VZV vaccination and maintained for at least 1 year in the elderly. CONCLUSION: Quantifying VZV responder CD4high -M cell proliferation is a convenient way to measure VZV CMI using small blood volumes. Our method can be applied to measure VZV vaccine-induced CMI in the elderly. Clinical study registry numbers: (www.clinicaltrials.jp) 173532 and 183985.


Asunto(s)
Vacuna contra el Herpes Zóster/uso terapéutico , Herpes Zóster/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Cultivo de Sangre , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular/fisiología , Femenino , Citometría de Flujo , Humanos , Inmunidad Celular/inmunología , Inmunidad Celular/fisiología , Masculino , Persona de Mediana Edad , Vacunación/métodos , Vacunas Atenuadas/uso terapéutico
13.
Microbiol Immunol ; 60(7): 483-96, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27278725

RESUMEN

The range of genome-editing tools has recently been expanded. In particular, an RNA-guided genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV-1 was designed and used to generate gRNA-expressing lentiviral vectors. An HIV-1-specific gRNA and Cas9 were stably dually transduced into a highly HIV-1-susceptible human T-cell line and the inhibitory ability of the anti-HIV-1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV-1 infection was observed, as evaluated by a VSV-G-pseudotyped HIV-1 reporter system, the anti-HIV-1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti-HIV-1 treatment with the CRISPR/Cas9 system alone.


Asunto(s)
Sistemas CRISPR-Cas , VIH-1/genética , Replicación Viral , Línea Celular , Células Cultivadas , Edición Génica , Marcación de Gen , Genes Virales , Infecciones por VIH/virología , Humanos , Mutación , ARN Guía de Kinetoplastida , Integración Viral
14.
PLoS Pathog ; 12(1): e1005357, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26735137

RESUMEN

Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.


Asunto(s)
Virus del Dengue/fisiología , Dengue/inmunología , Interferones/inmunología , Proteínas Virales/genética , Replicación Viral/inmunología , Línea Celular , Virus del Dengue/crecimiento & desarrollo , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Inmunoprecipitación , Espectrometría de Masas , Reacción en Cadena de la Polimerasa , Transfección
15.
Curr HIV Res ; 14(1): 2-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26255882

RESUMEN

BACKGROUND: Current HIV antiretroviral therapies potently suppress virus replication and prevent patients from progressing to AIDS but are unable to completely eliminate HIV due to the existence of dormant viral reservoirs which threaten to reemerge at anytime. Recently, genome-editing technologies that can recognize specific DNA sequences, including viral DNA, are being touted as promising tools for curing HIV, owing to their specificity, ease of use, and ability to be custom designed. CONCLUSION: Here, we introduce several novel strategies aimed at eradicating HIV proviruses with state-of-the-art genome-editing technologies and discuss perspectives of these approaches for curing HIV.


Asunto(s)
Terapia Genética/métodos , Infecciones por VIH/terapia , VIH-1/genética , Provirus/genética , ADN Viral/genética , Erradicación de la Enfermedad/métodos , Humanos , Latencia del Virus/genética
16.
PLoS One ; 10(3): e0120047, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25781496

RESUMEN

DNA-editing technology has made it possible to rewrite genetic information in living cells. Human immunodeficiency virus (HIV) provirus, an integrated form of viral complementary DNA in host chromosomes, could be a potential target for this technology. We recently reported that HIV proviral DNA could be excised from the chromosomal DNA of HIV-based lentiviral DNA-transduced T cells after multiple introductions of a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonuclease system targeting HIV long terminal repeats (LTR). Here, we generated a more efficient strategy that enables the excision of HIV proviral DNA using customized transcription activator-like effector nucleases (TALENs) targeting the same HIV LTR site. A single transfection of TALEN-encoding mRNA, prepared from in vitro transcription, resulted in more than 80% of lentiviral vector DNA being successfully removed from the T cell lines. Furthermore, we developed a lentiviral vector system that takes advantage of the efficient proviral excision with TALENs and permits the simple selection of gene-transduced and excised cells in T cell lines.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN Viral/genética , Vectores Genéticos/genética , VIH-1/genética , Transducción Genética , Integración Viral/genética , Línea Celular , ADN Viral/metabolismo , Vectores Genéticos/metabolismo , VIH-1/metabolismo , Humanos
17.
Sci Rep ; 3: 2510, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23974631

RESUMEN

Even though highly active anti-retroviral therapy is able to keep HIV-1 replication under control, the virus can lie in a dormant state within the host genome, known as a latent reservoir, and poses a threat to re-emerge at any time. However, novel technologies aimed at disrupting HIV-1 provirus may be capable of eradicating viral genomes from infected individuals. In this study, we showed the potential of the CRISPR/Cas9 system to edit the HIV-1 genome and block its expression. When LTR-targeting CRISPR/Cas9 components were transfected into HIV-1 LTR expression-dormant and -inducible T cells, a significant loss of LTR-driven expression was observed after stimulation. Sequence analysis confirmed that this CRISPR/Cas9 system efficiently cleaved and mutated LTR target sites. More importantly, this system was also able to remove internal viral genes from the host cell chromosome. Our results suggest that the CRISPR/Cas9 system may be a useful tool for curing HIV-1 infection.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Duplicado del Terminal Largo de VIH/genética , VIH-1/crecimiento & desarrollo , VIH-1/genética , Latencia del Virus/genética , Silenciador del Gen , Células HEK293 , Células HeLa , Humanos
18.
Virology ; 427(1): 44-50, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22374236

RESUMEN

HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.


Asunto(s)
Daño del ADN , ADN Complementario/genética , Infecciones por VIH/virología , Integrasa de VIH/metabolismo , VIH-1/genética , Integración Viral/genética , Reparación del ADN , ADN Complementario/metabolismo , ADN Viral/genética , Células HEK293 , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/farmacología , VIH-1/enzimología , Humanos , Células Jurkat , Carga Viral , Proteínas Virales/genética , Replicación Viral/genética
19.
AIDS Res Hum Retroviruses ; 28(8): 913-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21936715

RESUMEN

Rho GTPases are able to influence the replication of human immunodeficiency virus type 1 (HIV-1). However, little is known about the regulation of HIV-1 replication by guanine nucleotide dissociation inhibitors (GDIs), one of the three major regulators of the Rho GTPase activation cycle. From a T cell-based cDNA library screening, ARHGDIB/RhoGDIß, a hematopoietic lineage-specific GDI family protein, was identified as a negative regulator of HIV-1 replication. Up-regulation of ARHGDIB attenuated the replication of HIV-1 in multiple T cell lines. The results showed that (1) a significant portion of RhoA and Rac1, but not Cdc42, exists in the GTP-bound active form under steady-state conditions, (2) ectopic ARHGDIB expression reduced the F-actin content and the active forms of both RhoA and Rac1, and (3) HIV-1 infection was attenuated by either ectopic expression of ARHGDIB or inhibition of the RhoA signal cascade at the HIV-1 Env-dependent early phase of the viral life cycle. This is in good agreement with the previous finding that RhoA and Rac1 promote HIV-1 entry by increasing the efficiency of receptor clustering and virus-cell membrane fusion. In conclusion, the ARHGDIB is a lymphoid-specific intrinsic negative regulator of HIV-1 replication that acts by simultaneously inhibiting RhoA and Rac1 functions.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , Western Blotting , Replicación del ADN , Citometría de Flujo , VIH-1/genética , Humanos , Transducción de Señal , Regulación hacia Arriba , Replicación Viral/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/genética
20.
J Virol ; 85(19): 9726-36, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21775448

RESUMEN

APOBEC1 (A1) is a cytidine deaminase involved in the regulation of lipids in the small intestine. Herpes simplex virus 1 (HSV-1) is a ubiquitous pathogen that is capable of infecting neurons in the brain, causing encephalitis. Here, we show that A1 is induced during encephalitis in neurons of rats infected with HSV-1. In cells stably expressing A1, HSV-1 infection resulted in significantly reduced virus replication compared to that in control cells. Infectivity could be restored to levels comparable to those observed for control cells if A1 expression was silenced by specific A1 short hairpin RNAs (shRNA). Moreover, cytidine deaminase activity appeared to be essential for this inhibition and led to an impaired accumulation of viral mRNA transcripts and DNA copy numbers. The sequencing of viral gene UL54 DNA, extracted from infected A1-expressing cells, revealed G-to-A and C-to-T transitions, indicating that A1 associates with HSV-1 DNA. Taken together, our results demonstrate a model in which A1 induction during encephalitis in neurons may aid in thwarting HSV-1 infection.


Asunto(s)
Citidina Desaminasa/inmunología , Citidina Desaminasa/metabolismo , ADN/metabolismo , Encefalitis por Herpes Simple/inmunología , Encefalitis por Herpes Simple/virología , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/patogenicidad , Desaminasas APOBEC-1 , Animales , ADN Viral/metabolismo , Modelos Animales de Enfermedad , Neuronas/inmunología , Neuronas/virología , ARN Viral/metabolismo , Ratas , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/virología , Análisis de Supervivencia , Virulencia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...