Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(18): 10001-10010, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638745

RESUMEN

Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.


Asunto(s)
Serina-ARNt Ligasa , Animales , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
2.
ACS Appl Mater Interfaces ; 15(25): 29729-29742, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37319328

RESUMEN

Soft tissue defects or pathologies frequently necessitate the use of biomaterials that provide the volume required for subsequent vascularization and tissue formation as autrografts are not always a feasible alternative. Supramolecular hydrogels represent promising candidates because of their 3D structure, which resembles the native extracellular matrix, and their capacity to entrap and sustain living cells. Guanosine-based hydrogels have emerged as prime candidates in recent years since the nucleoside self-assembles into well-ordered structures like G-quadruplexes by coordinating K+ ions and π-π stacking, ultimately forming an extensive nanofibrillar network. However, such compositions were frequently inappropriate for 3D printing due to material spreading and low shape stability over time. Thus, the present work aimed to develop a binary cell-laden hydrogel capable of ensuring cell survival while providing enough stability to ensure scaffold biointegration during soft tissue reconstruction. For that purpose, a binary hydrogel made of guanosine and guanosine 5'-monophosphate was optimized, rat mesenchymal stem cells were entrapped, and the composition was bioprinted. To further increase stability, the printed structure was coated with hyperbranched polyethylenimine. Scanning electron microscopic studies demonstrated an extensive nanofibrillar network, indicating excellent G-quadruplex formation, and rheological analysis confirmed good printing and thixotropic qualities. Additionally, diffusion tests using fluorescein isothiocyanate labeled-dextran (70, 500, and 2000 kDa) showed that nutrients of various molecular weights may diffuse through the hydrogel scaffold. Finally, cells were evenly distributed throughout the printed scaffold, cell survival was 85% after 21 days, and lipid droplet formation was observed after 7 days under adipogenic conditions, indicating successful differentiation and proper cell functioning. To conclude, such hydrogels may enable the 3D bioprinting of customized scaffolds perfectly matching the respective soft tissue defect, thereby potentially improving the outcome of the tissue reconstruction intervention.


Asunto(s)
Bioimpresión , Hidrogeles , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Guanosina Monofosfato , Guanosina , Materiales Biocompatibles , Ingeniería de Tejidos , Impresión Tridimensional , Andamios del Tejido/química
3.
Dalton Trans ; 52(12): 3610-3622, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36857690

RESUMEN

Peptidases are regulated by latency and inhibitors, as well as compatibilization and cofactors. Ulilysin from Methanosarcina acetivorans, also called lysargiNase, is an archaeal metallopeptidase (MP) that is biosynthesized as a zymogen with a 60-residue N-terminal prosegment (PS). In the presence of calcium, it self-activates to yield the mature enzyme, which specifically cleaves before basic residues and thus complements trypsin in proteomics workflows. Here, we obtained a low-resolution crystal structure of proulilysin, in which 28 protomers arranged as 14 dimers form a continuous double helix of 544 Å pitch that parallels cell axis b of the crystal. The PS includes two α-helices and obstructs the active-site cleft of the catalytic domain (CD) by traversing it in the opposite orientation of a substrate, and a cysteine blocks the catalytic zinc according to a "cysteine-switch mechanism". Moreover, the PS interacts through its first helix with an "S-loop" of the CD, which acts as an "activation segment" that lacks one of two essential calcium cations. Upon PS removal during maturation, the S-loop adopts its competent conformation and binds the second calcium ion. Next, we found that in addition to general MP inhibitors, ulilysin was competitively and reversibly inhibited by 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF; Ki = 4 µM). This is a compound that normally forms an irreversible covalent complex with serine peptidases but does not inhibit MPs. A high-resolution crystal structure of the complex revealed that the inhibitor penetrates the specificity pocket of ulilysin. A primary amine of the inhibitor salt-bridges an aspartate at the pocket bottom, thus mimicking the basic side chain of substrates. In contrast, the sulfonyl fluoride warhead is not involved and the catalytic zinc ion is freely accessible. Thus, the usage of inhibitor cocktails of peptidases, which typically contain AEBSF at ∼25-fold higher concentrations than the determined Ki, should be avoided when working with ulilysin. Finally, the structure of the complex, which occurred as a crystallographic dimer recurring in previous mature ulilysin structures, unveiled an N-terminal product fragment that delineated the non-primed side of the cleft. These results complement prior structures of ulilysin with primed-side product fragments and inhibitors.


Asunto(s)
Calcio , Fluoruros , Cisteína , Metaloproteasas/química , Péptido Hidrolasas/metabolismo , Zinc , Serina , Cristalografía por Rayos X , Conformación Proteica
4.
Sci Adv ; 9(11): eade2175, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921044

RESUMEN

Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/química , Unión Proteica , Mutación , Neoplasias de la Próstata/genética , Procesamiento Proteico-Postraduccional
5.
Chem Sci ; 14(4): 869-888, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36755705

RESUMEN

Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct ß-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.

6.
Nat Commun ; 13(1): 5661, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192397

RESUMEN

Antibodies, and antibody derivatives such as nanobodies, contain immunoglobulin-like (Ig) ß-sandwich scaffolds which anchor the hypervariable antigen-binding loops and constitute the largest growing class of drugs. Current engineering strategies for this class of compounds rely on naturally existing Ig frameworks, which can be hard to modify and have limitations in manufacturability, designability and range of action. Here, we develop design rules for the central feature of the Ig fold architecture-the non-local cross-ß structure connecting the two ß-sheets-and use these to design highly stable Ig domains de novo, confirm their structures through X-ray crystallography, and show they can correctly scaffold functional loops. Our approach opens the door to the design of antibody-like scaffolds with tailored structures and superior biophysical properties.


Asunto(s)
Anticuerpos de Dominio Único , Secuencia de Aminoácidos , Anticuerpos/química , Regiones Determinantes de Complementariedad , Dominios de Inmunoglobulinas , Modelos Moleculares , Conformación Proteica
7.
Protein Sci ; 31(10): e4427, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173175

RESUMEN

Bacteroides fragilis is an abundant commensal component of the healthy human colon. However, under dysbiotic conditions, enterotoxigenic B. fragilis (ETBF) may arise and elicit diarrhea, anaerobic bacteremia, inflammatory bowel disease, and colorectal cancer. Most worrisome, ETBF is resistant to many disparate antibiotics. ETBF's only recognized specific virulence factor is a zinc-dependent metallopeptidase (MP) called B. fragilis toxin (BFT) or fragilysin, which damages the intestinal mucosa and triggers disease-related signaling mechanisms. Thus, therapeutic targeting of BFT is expected to limit ETBF pathogenicity and improve the prognosis for patients. We focused on one of the naturally occurring BFT isoforms, BFT-3, and managed to repurpose several approved drugs as BFT-3 inhibitors through a combination of biophysical, biochemical, structural, and cellular techniques. In contrast to canonical MP inhibitors, which target the active site of mature enzymes, these effectors bind to a distal allosteric site in the proBFT-3 zymogen structure, which stabilizes a partially unstructured, zinc-free enzyme conformation by shifting a zinc-dependent disorder-to-order equilibrium. This yields proBTF-3 incompetent for autoactivation, thus ablating hydrolytic activity of the mature toxin. Additionally, a similar destabilizing effect is observed for the activated protease according to biophysical and biochemical data. Our strategy paves a novel way for the development of highly specific inhibitors of ETBF-mediated enteropathogenic conditions.


Asunto(s)
Infecciones Bacterianas , Toxinas Bacterianas , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Bacteroides fragilis/metabolismo , Precursores Enzimáticos/metabolismo , Humanos , Metaloendopeptidasas/metabolismo , Factores de Virulencia/metabolismo
8.
Nat Commun ; 13(1): 4446, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915115

RESUMEN

The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-ß pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded ß-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase.


Asunto(s)
Enfermedad Celíaca , Animales , Enfermedad Celíaca/tratamiento farmacológico , Enfermedad Celíaca/genética , Precursores Enzimáticos , Gliadina/química , Gliadina/metabolismo , Ácido Glutámico , Glútenes/química , Ratones , Prolil Oligopeptidasas , Sarraceniaceae/enzimología
9.
Comput Struct Biotechnol J ; 20: 534-544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465156

RESUMEN

Aureolysin, a secreted metallopeptidase (MP) from the thermolysin family, functions as a major virulence factor in Staphylococcus aureus. No specific aureolysin inhibitors have yet been described, making this an important target for the development of novel antimicrobial drugs in times of rampant antibiotic resistance. Although small-molecule inhibitors are currently more common in the clinic, therapeutic proteins and peptides (TPs) are favourable due to their high selectivity, which reduces off-target toxicity and allows dosage tuning. The greater wax moth Galleria mellonella produces a unique defensive protein known as the insect metallopeptidase inhibitor (IMPI), which selectively inhibits some thermolysins from pathogenic bacteria. We determined the ability of IMPI to inhibit aureolysin in vitro and used crystal structures to ascertain its mechanism of action. This revealed that IMPI uses the "standard mechanism", which has been poorly characterised for MPs in general. Accordingly, we designed a cohort of 12 single and multiple point mutants, the best of which (I57F) inhibited aureolysin with an estimated inhibition constant (K i) of 346 nM. Given that animals lack thermolysins, our strategy may facilitate the development of safe TPs against staphylococcal infections, including strains resistant to conventional antibiotics.

10.
Biomolecules ; 12(2)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35204806

RESUMEN

Bacterial biofilms represent multicellular communities embedded in a matrix of extracellular polymeric substances, conveying increased resistance against environmental stress factors but also antibiotics. They are shaped by secreted enzymes such as proteases, which can aid pathogenicity by degrading host proteins of the connective tissue or the immune system. Importantly, both secreted proteases and the capability of biofilm formation are considered key virulence factors. In this review, we focus on the basic aspects of proteolysis and protein secretion, and highlight various secreted bacterial proteases involved in biofilm establishment and dispersal, and how they aid bacteria in immune evasion by degrading immunoglobulins and components of the complement system. Thus, secreted proteases represent not only prominent antimicrobial targets but also enzymes that can be used for dedicated applications in biotechnology and biomedicine, including their use as laundry detergents, in mass spectrometry for the glycoprofiling of antibodies, and the desensitization of donor organs intended for positive crossmatch patients.


Asunto(s)
Evasión Inmune , Péptido Hidrolasas , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Endopeptidasas , Humanos , Factores de Virulencia/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593635

RESUMEN

Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency ß-hairpin" protrudes ∼30 Å from the surface to form an intermolecular ß-barrel with ß-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Proteínas de la Membrana/genética , Porphyromonas gingivalis/genética , Serina Endopeptidasas/genética , Catálisis , Dominios Proteicos/genética , Transporte de Proteínas/genética , Virulencia/genética
12.
Bioact Mater ; 6(12): 4470-4490, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34027235

RESUMEN

Bacterial infection of implanted scaffolds may have fatal consequences and, in combination with the emergence of multidrug bacterial resistance, the development of advanced antibacterial biomaterials and constructs is of great interest. Since decades ago, metals and their ions had been used to minimize bacterial infection risk and, more recently, metal-based nanomaterials, with improved antimicrobial properties, have been advocated as a novel and tunable alternative. A comprehensive review is provided on how metal ions and ion nanoparticles have the potential to decrease or eliminate unwanted bacteria. Antibacterial mechanisms such as oxidative stress induction, ion release and disruption of biomolecules are currently well accepted. However, the exact antimicrobial mechanisms of the discussed metal compounds remain poorly understood. The combination of different metal ions and surface decorations of nanoparticles will lead to synergistic effects and improved microbial killing, and allow to mitigate potential side effects to the host. Starting with a general overview of antibacterial mechanisms, we subsequently focus on specific metal ions such as silver, zinc, copper, iron and gold, and outline their distinct modes of action. Finally, we discuss the use of these metal ions and nanoparticles in tissue engineering to prevent implant failure.

13.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782129

RESUMEN

Meprin ß (Mß) is a multidomain type-I membrane metallopeptidase that sheds membrane-anchored substrates, releasing their soluble forms. Fetuin-B (FB) is its only known endogenous protein inhibitor. Herein, we analyzed the interaction between the ectodomain of Mß (MßΔC) and FB, which stabilizes the enzyme and inhibits it with subnanomolar affinity. The MßΔC:FB crystal structure reveals a ∼250-kDa, ∼160-Å polyglycosylated heterotetrameric particle with a remarkable glycan structure. Two FB moieties insert like wedges through a "CPDCP trunk" and two hairpins into the respective peptidase catalytic domains, blocking the catalytic zinc ions through an "aspartate switch" mechanism. Uniquely, the active site clefts are obstructed from subsites S4 to S10', but S1 and S1' are spared, which prevents cleavage. Modeling of full-length Mß reveals an EGF-like domain between MßΔC and the transmembrane segment that likely serves as a hinge to transit between membrane-distal and membrane-proximal conformations for inhibition and catalysis, respectively.


Asunto(s)
Fetuína-B/química , Metaloendopeptidasas/química , Animales , Sitios de Unión , Línea Celular , Fetuína-B/metabolismo , Humanos , Lepidópteros , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica
14.
Elife ; 102021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33567250

RESUMEN

The first S-adenosyl methionine (SAM) degrading enzyme (SAMase) was discovered in bacteriophage T3, as a counter-defense against the bacterial restriction-modification system, and annotated as a SAM hydrolase forming 5'-methyl-thioadenosine (MTA) and L-homoserine. From environmental phages, we recently discovered three SAMases with barely detectable sequence similarity to T3 SAMase and without homology to proteins of known structure. Here, we present the very first phage SAMase structures, in complex with a substrate analogue and the product MTA. The structure shows a trimer of alpha-beta sandwiches similar to the GlnB-like superfamily, with active sites formed at the trimer interfaces. Quantum-mechanical calculations, thin-layer chromatography, and nuclear magnetic resonance spectroscopy demonstrate that this family of enzymes are not hydrolases but lyases forming MTA and L-homoserine lactone in a unimolecular reaction mechanism. Sequence analysis and in vitro and in vivo mutagenesis support that T3 SAMase belongs to the same structural family and utilizes the same reaction mechanism.


Bacteria can be infected by viruses known as bacteriophages. These viruses inject their genetic material into bacterial cells and use the bacteria's own machinery to build the proteins they need to survive and infect other cells. To protect themselves, bacteria produce a molecule called S-adenosyl methionine, or SAM for short, which deposits marks on the bacteria's DNA. These marks help the bacteria distinguish their own genetic material from the genetic material of foreign invaders: any DNA not bearing the mark from SAM will be immediately broken down by the bacterial cell. This system helps to block many types of bacteriophage infections, but not all. Some bacteriophages carry genes that code for enzymes called SAMases, which can break down SAM, switching off the bacteria's defenses. The most well-known SAMase was first discovered in the 1960s in a bacteriophage called T3. Chemical studies of this SAMase suggested that it works as a 'hydrolase', meaning that it uses water to break SAM apart. New SAMases have since been discovered in bacteriophages from environmental water samples, which, despite being able to degrade SAM, are genetically dissimilar to one another and the SAMase in T3. This brings into question whether these enzymes all use the same mechanism to break SAM down. To gain a better understanding of how these SAMases work, Guo, Söderholm, Kanchugal, Isaksen et al. solved the crystal structure of one of the newly discovered enzymes called Svi3-3. This revealed three copies of the Svi3-3 enzyme join together to form a unit that SAM binds to at the border between two of the enzymes. Computer simulations of this structure suggested that Svi3-3 holds SAM in a position where it cannot interact with water, and that once in the grip of the SAMase, SAM instead reacts with itself and splits into two. Experiments confirmed these predictions for Svi3-3 and the other tested SAMases. Furthermore, the SAMase from bacteriophage T3 was also found to degrade SAM using the same mechanism. This shows that this group of SAMases are not hydrolases as originally thought, but in fact 'lyases': enzymes that break molecules apart without using water. These findings form a starting point for further investigations into how SAM lyases help bacteriophages evade detection. SAM has various different functions in other living organisms, and these lyases could be used to modulate the levels of SAM in future studies investigating its role.


Asunto(s)
Bacteriófago T3/genética , Liasas/genética , Proteínas Virales/genética , Bacteriófago T3/metabolismo , Escherichia coli/virología , Liasas/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas Virales/metabolismo
15.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35008838

RESUMEN

Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3' to P6' was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Exotoxinas/metabolismo , Espectrometría de Masas , Proteolisis , Streptococcus pyogenes/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Escherichia coli/metabolismo , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
16.
Biomolecules ; 10(12)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287293

RESUMEN

Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.


Asunto(s)
Peces , Fosfoglucomutasa/metabolismo , Animales , Dominio Catalítico , Glucofosfatos/metabolismo , Fosfoglucomutasa/química , Unión Proteica , Especificidad por Sustrato
17.
Sci Rep ; 10(1): 19052, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149258

RESUMEN

Flagellins are the protein components of bacterial flagella and assemble in up to 20,000 copies to form extracellular flagellar filaments. An unusual family of flagellins was recently discovered that contains a unique metalloprotease domain within its surface-exposed hypervariable region. To date, these proteolytic flagellins (also termed flagellinolysins) have only been characterized in the Gram-positive organism Clostridium haemolyticum, where flagellinolysin was shown to be proteolytically active and capable of cleaving extracellular protein substrates. The biological function of flagellinolysin and its activity in other organisms, however, remain unclear. Here, using molecular biochemistry and proteomics, we have performed an initial characterization of a novel flagellinolysin identified from Hylemonella gracilis, a Gram-negative organism originally isolated from pond water. We demonstrate that H. gracilis flagellinolysin (HgrFlaMP) is an active calcium-dependent zinc metallopeptidase and characterize its cleavage specificity profile using both trypsin and GluC-derived peptide libraries and protein substrates. Based on high-throughput degradomic assays, HgrFlaMP cleaved 784 unique peptides and displayed a cleavage site specificity similar to flagellinolysin from C. haemolyticum. Additionally, by using a set of six protein substrates, we identified 206 protein-embedded cleavage sites, further refining the substrate preference of HgrFlaMP, which is dominated by large hydrophobic amino acids in P1', and small hydrophobic or medium-sized polar residues on the amino-terminal side of the scissile bond. Intriguingly, recombinant HgrFlaMP was also capable of cleaving full-length flagellins from another species, suggesting its potential involvement in interbacterial interactions. Our study reports the first experimentally characterized proteolytic flagellin in a Gram-negative organism, and provides new insights into flagellum-mediated enzymatic activity.


Asunto(s)
Comamonadaceae/metabolismo , Flagelina/metabolismo , Agua Dulce/microbiología , Microbiología del Agua , Aminoácidos , Comamonadaceae/clasificación , Comamonadaceae/genética , Flagelina/genética , Genoma Bacteriano , Sistemas de Lectura Abierta , Filogenia , Proteolisis , Proteoma , Proteómica/métodos , Especificidad por Sustrato
18.
Nat Commun ; 9(1): 2416, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925830

RESUMEN

Controlled macrophage differentiation and activation in the initiation and resolution of inflammation is crucial for averting progression to chronic inflammatory and autoimmune diseases. Here we show a negative feedback mechanism for proinflammatory IFN-γ activation of macrophages driven by macrophage-associated matrix metalloproteinase 12 (MMP12). Through C-terminal truncation of IFN-γ at 135Glu↓Leu136 the IFN-γ receptor-binding site was efficiently removed thereby reducing JAK-STAT1 signaling and IFN-γ activation of proinflammatory macrophages. In acute peritonitis this signature was absent in Mmp12 -/- mice and recapitulated in Mmp12 +/+ mice treated with a MMP12-specific inhibitor. Similarly, loss-of-MMP12 increases IFN-γ-dependent proinflammatory markers and iNOS+/MHC class II+ macrophage accumulation with worse lymphadenopathy, arthritic synovitis and lupus glomerulonephritis. In active human systemic lupus erythematosus, MMP12 levels were lower and IFN-γ higher compared to treated patients or healthy individuals. Hence, macrophage proteolytic truncation of IFN-γ attenuates classical activation of macrophages as a prelude for resolving inflammation.


Asunto(s)
Interferón gamma/metabolismo , Nefritis Lúpica/inmunología , Activación de Macrófagos/inmunología , Metaloproteinasa 12 de la Matriz/metabolismo , Animales , Artritis/inmunología , Artritis/patología , Biopsia , Línea Celular , Colágeno/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Riñón/patología , Nefritis Lúpica/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Metaloproteinasa 12 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peritonitis/inducido químicamente , Peritonitis/inmunología , Peritonitis/patología , Cultivo Primario de Células , Proteolisis , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Células THP-1 , Tioglicolatos/toxicidad
19.
Pigment Cell Melanoma Res ; 31(6): 693-707, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29781574

RESUMEN

The mouse tail has an important role in the study of melanogenesis, because mouse tail skin can be used to model human skin pigmentation. To better understand the development of melanocytes in the mouse tail, we cloned two dominant ENU-generated mutations of the Adamts9 gene, Und3 and Und4, which cause an unpigmented ring of epidermis in the middle of the tail, but do not alter pigmentation in the rest of the mouse. Adamts9 encodes a widely expressed zinc metalloprotease with thrombospondin type 1 repeats with few known substrates. Melanocytes are lost in the Adamts9 mutant tail epidermis at a relatively late stage of development, around E18.5. Studies of our Adamts9 conditional allele suggest that there is a melanocyte cell-autonomous requirement for Adamts9. In addition, we used a proteomics approach, TAILS N-terminomics, to identify new Adamts9 candidate substrates in the extracellular matrix of the skin. The tail phenotype of Adamts9 mutants is strikingly similar to the unpigmented trunk belt in Adamts20 mutants, which suggests a particular requirement for Adamts family activity at certain positions along the anterior-posterior axis.


Asunto(s)
Proteína ADAMTS9/metabolismo , Epidermis/enzimología , Melanocitos/metabolismo , Alelos , Animales , Animales Recién Nacidos , Secuencia de Bases , Muerte Celular , Ingeniería Genética , Haploinsuficiencia , Intrones/genética , Queratinocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Fenotipo , Proteómica , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cola (estructura animal)
20.
Nat Ecol Evol ; 2(8): 1321-1330, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29807996

RESUMEN

One key concept in the evolution of new functions is the ability of enzymes to perform promiscuous side-reactions that serve as a source of novelty that may become beneficial under certain conditions. Here, we identify a mechanism where a bacteriophage-encoded enzyme introduces novelty by inducing expression of a promiscuous bacterial enzyme. By screening for bacteriophage DNA that rescued an auxotrophic Escherichia coli mutant carrying a deletion of the ilvA gene, we show that bacteriophage-encoded S-adenosylmethionine (SAM) hydrolases reduce SAM levels. Through this perturbation of bacterial metabolism, expression of the promiscuous bacterial enzyme MetB is increased, which in turn complements the absence of IlvA. These results demonstrate how foreign DNA can increase the metabolic capacity of bacteria, not only by transfer of bona fide new genes, but also by bringing cryptic bacterial functions to light via perturbations of cellular physiology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Escherichia coli/fisiología , Hidrolasas/metabolismo , ADN Viral , Escherichia coli/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA