Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Earth Environ ; 5(1): 266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779128

RESUMEN

Ocean spring phytoplankton blooms are dynamic periods important to global primary production. We document vertical patterns of a diverse suite of eukaryotic algae, the prasinophytes, in the North Atlantic Subtropical Gyre with monthly sampling over four years at the Bermuda Atlantic Time-series Study site. Water column structure was used to delineate seasonal stability periods more ecologically relevant than seasons defined by calendar dates. During winter mixing, tiny prasinophytes dominated by Class II comprise 46 ± 24% of eukaryotic algal (plastid-derived) 16S rRNA V1-V2 amplicons, specifically Ostreococcus Clade OII, Micromonas commoda, and Bathycoccus calidus. In contrast, Class VII are rare and Classes I and VI peak during warm stratified periods when surface eukaryotic phytoplankton abundances are low. Seasonality underpins a reservoir of genetic diversity from multiple prasinophyte classes during warm periods that harbor ephemeral taxa. Persistent Class II sub-species dominating the winter/spring bloom period retreat to the deep chlorophyll maximum in summer, poised to seed the mixed layer upon winter convection, exposing a mechanism for initiating high abundances at bloom onset. Comparisons to tropical oceans reveal broad distributions of the dominant sub-species herein. This unparalleled window into temporal and spatial niche partitioning of picoeukaryotic primary producers demonstrates how key prasinophytes prevail in warm oceans.

2.
PLoS One ; 19(4): e0298139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564528

RESUMEN

Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Agua , ARN Ribosómico 16S/genética , Filogenia , Bacterias/genética , Océanos y Mares , Alphaproteobacteria/genética , Gammaproteobacteria/genética , Agua de Mar/microbiología
3.
Environ Microbiol ; 25(11): 2118-2141, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37311449

RESUMEN

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.


Asunto(s)
Chlorophyta , Ecosistema , Humanos , Salinidad , Bahías , Agua de Mar/microbiología , Fotosíntesis , Fitoplancton , Clorofila
4.
Microorganisms ; 10(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35630405

RESUMEN

Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears to constitute a large, but variable, proportion of the phytoplankton in these waters. Here, we analyze 81 samples from the upper 100 m of the water column from the Fram Strait collected over multiple years (2009−2015). We also analyze sediment trap samples to examine picophytoplankton contributions to export, using both 18S rRNA gene qPCR and V1-V2 16S rRNA Illumina amplicon sequencing to assess the Micromonas abundance within the broader diversity of photosynthetic eukaryotes based on the phylogenetic placement of plastid-derived 16S amplicons. The material sequenced from the sediment traps in July and September 2010 showed that 11.2 ± 12.4% of plastid-derived amplicons are from picoplanktonic prasinophyte algae and other green lineage (Viridiplantae) members. In the traps, Micromonas dominated (83.6 ± 21.3%) in terms of the overall relative abundance of Viridiplantae amplicons, specifically the species Micromonas polaris. Temporal variations in Micromonas abundances quantified by qPCR were also observed, with higher abundances in the late-July traps and deeper traps. In the photic zone samples, four prasinophyte classes were detected in the amplicon data, with Micromonas again being the dominant prasinophyte, based on the relative abundance (89.4 ± 8.0%), but with two species (M. polaris and M. commoda-like) present. The quantitative PCR assessments showed that the photic zone samples with higher Micromonas abundances (>1000 gene copies per mL) had significantly lower standing stocks of phosphate and nitrate, and a shallower average depth (20 m) than those with fewer Micromonas. This study shows that despite their size, prasinophyte picophytoplankton are exported to the deep sea, and that Micromonas is particularly important within this size fraction in Arctic marine ecosystems.

5.
Philos Trans R Soc Lond B Biol Sci ; 374(1786): 20190090, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31587652

RESUMEN

Photosynthesis in eukaryotes first arose through phagocytotic processes wherein an engulfed cyanobacterium was not digested, but instead became a permanent organelle. Other photosynthetic lineages then arose when eukaryotic cells engulfed other already photosynthetic eukaryotic cells. Some of the resulting lineages subsequently lost their ability for phagocytosis, while many others maintained the ability to do both processes. These mixotrophic taxa have more complicated ecological roles, in that they are both primary producers and consumers that can shift more towards producing the organic matter that forms the base of aquatic food chains, or towards respiring and releasing CO2. We still have much to learn about which taxa are predatory mixotrophs as well as about the physiological consequences of this lifestyle, in part, because much of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncultured. Here, we discuss existing methods for studying predatory mixotrophs, their individual biases, and how single-cell approaches can enhance knowledge of these important taxa. The question remains what the gold standard should be for assigning a mixotrophic status to ill-characterized or uncultured taxa-a status that dictates how organisms are incorporated into carbon cycle models and how their ecosystem roles may shift in future lakes and oceans. This article is part of a discussion meeting issue 'Single cell ecology'.


Asunto(s)
Ecología/métodos , Eucariontes/fisiología , Rasgos de la Historia de Vida , Biología Marina/métodos , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA