Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 4(21): 4106-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25505537

RESUMEN

The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

2.
Mutat Res ; 743-744: 53-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23391514

RESUMEN

The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.


Asunto(s)
Daño del ADN , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Animales , Humanos , Transducción de Señal
3.
Mutat Res ; 662(1-2): 59-66, 2009 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-19138690

RESUMEN

DNA mismatch repair (MMR) within human cells is hypothesized to occur primarily at the replication fork. However, experimental models measuring MMR activity at specific phases of the cell cycle and during genomic DNA synthesis are lacking. We have investigated MMR activity within the nuclear environment of HeLa cells after enriching for G1, S and G2/M phase of the cell cycle by centrifugal elutriation. This approach preserves physiologically normal MMR activity in cell populations subdivided into different phases of the cell cycle. Here we have shown that nuclear protein concentration of hMutSalpha and hMutLalpha increases as cells progress into S phase during routine cell culture. MMR activity, as measured by both in vitro and in vivo approaches, increases during S phase to the highest extent within normally growing cells. Both fidelity and activity of MMR are highest on actively replicating templates within intact cells during S phase. The MMR pathway however, is also active at lower levels at other phases of the cell cycle, and on nonreplicating templates.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , ADN/biosíntesis , Núcleo Celular/metabolismo , Supervivencia Celular , Citometría de Flujo , Fase G1 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Plásmidos/genética
4.
Exp Cell Res ; 313(2): 292-304, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17157834

RESUMEN

The DNA mismatch repair (MMR) pathway contributes to the fidelity of DNA synthesis and recombination by correcting mispaired nucleotides and insertion/deletion loops (IDLs). We have investigated whether MMR protein expression, activity, and subcellular location are altered during discrete phases of the cell cycle in mammalian cells. Two distinct methods have been used to demonstrate that although physiological MMR protein expression, mismatch binding, and nick-directed MMR activity within the nucleus are at highest levels during S phase, MMR is active throughout the cell cycle. Despite equal MMR nuclear protein concentrations in S and G(2) phases, mismatch binding and repair activities within G(2) are significantly lower, indicating a post-translational decrease in MMR activity specific to G(2). We further demonstrate that typical co-localization of MutSalpha to late S phase replication foci can be disrupted by 2 microM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This concentration of MNNG does not decrease ongoing DNA synthesis nor induce cell cycle arrest until the second cell cycle, with long-term colony survival decreased by only 24%. These results suggest that low level alkylation damage can selectively disrupt MMR proofreading activity during DNA synthesis and potentially increase mutation frequency within surviving cells.


Asunto(s)
Ciclo Celular/genética , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Animales , Núcleo Celular/química , Células Cultivadas , Replicación del ADN , Proteínas de Unión al ADN/análisis , Humanos , Antígeno Nuclear de Célula en Proliferación/análisis , Antígeno Nuclear de Célula en Proliferación/metabolismo
5.
BMC Mol Biol ; 6: 6, 2005 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-15766387

RESUMEN

BACKGROUND: The current investigation was undertaken to determine key steps differentiating G:T and G:A repair at the H-ras oncogenic hot spot within the nuclear environment because of the large difference in repair efficiency of these two mismatches. RESULTS: Electrophoretic mobility shift (gel shift) experiments demonstrate that DNA containing mismatched bases are recognized and bound equally efficiently by hMutSalpha in both MMR proficient and MMR deficient (hMLH1-/-) nuclear extracts. Competition experiments demonstrate that while hMutSalpha predictably binds the G:T mismatch to a much greater extent than G:A, hMutSalpha demonstrates a surprisingly equal ratio of competitive inhibition for both G:T and G:A mismatch binding reactions at the H-ras hot spot of mutation. Further, mismatch repair assays reveal almost 2-fold higher efficiency of overall G:A repair (5'-nick directed correct MMR to G:C and incorrect repair to T:A), as compared to G:T overall repair. Conversely, correct MMR of G:T --> G:C is significantly higher (96%) than that of G:A --> G:C (60%). CONCLUSION: Combined, these results suggest that initiation of correct MMR requires the contribution of two separate steps; initial recognition by hMutSalpha followed by subsequent binding. The 'avidity' of the binding step determines the extent of MMR pathway activation, or the activation of a different cellular pathway. Thus, initial recognition by hMutSalpha in combination with subsequent decreased binding to the G:A mismatch (as compared to G:T) may contribute to the observed increased frequency of incorrect repair of G:A, resulting in the predominant GGC --> GTC (Gly --> Val) ras-activating mutation found in a high percentage of human tumors.


Asunto(s)
Disparidad de Par Base/genética , Codón/genética , Reparación del ADN , Proteínas/genética , Proteínas ras/genética , Línea Celular Tumoral , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética/métodos , Células HCT116 , Humanos , Modelos Biológicos , Plásmidos/genética , Mutación Puntual/genética , Proto-Oncogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...