Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Genet ; 66(8): 104801, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37339696

RESUMEN

Microphthalmia (MCOP) is a group of rare developmental malformations of eye with often reduced size of the eyeball, leading to blindness. Affecting about 1 in 7000 live births, MCOP can occur due to either environmental or genetic factors. Isolated microphthalmia-8 (MCOP8) has been proved to be caused by autosomal recessive mutations of the ALDH1A3 gene (MIM*600463) encoding aldehyde dehydrogenase 1 family, member A3. Herein, we report an 8-year-old boy with vision problems since birth from a first-cousin consanguineous parents. The main symptoms of the patient included severe bilateral microphthalmia, cyst in the left eye and blindness. The child developed behavioral disorders at the age of 7. It should be noted that there is no family history of the disease. To identify the genetic factor underlying the pathogenesis in this case Whole Exome Sequencing (WES) was performed and followed by Sanger sequencing. A novel pathogenic variant, c.1441delA (p.M482Cfs*8), in the ALDH1A3 gene was detected by WES in the proband. Further prenatal diagnosis is highly suggested to the family for the future pregnancies.


Asunto(s)
Anoftalmos , Microftalmía , Niño , Humanos , Masculino , Aldehído Oxidorreductasas/genética , Anoftalmos/genética , Ceguera , Microftalmía/genética , Microftalmía/patología , Mutación , Linaje
2.
Am J Med Genet A ; 191(5): 1465-1469, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36757286

RESUMEN

Li-Campeau syndrome (LICAS) is an autosomal recessive disorder characterized by developmental delay, intellectual disability, genital anomalies, congenital heart defects, and dysmorphic features. LICAS is caused by biallelic pathogenic variants in the UBR7 gene, acting as an E3 ubiquitin-protein ligase. Using exome sequencing (ES), we identified a homozygous novel pathogenic splice site variation c.1185+1G>C in UBR7 in a 32-month-old male from a nonconsanguineous Turkish family with clinical features of LICAS. Sanger sequencing revealed the heterozygous state of parents for this variant and confirmed the co-segregation study. The variant may lead to the loss of function of UBR7 and is in a highly conserved residue. Bioinformatic prediction analysis using in silico algorithms supports the pathogenic effect of the splice site variant in the UBR7.


Asunto(s)
Discapacidad Intelectual , Humanos , Masculino , Secuenciación del Exoma , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo
3.
Genomics ; 115(2): 110556, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599399

RESUMEN

As the most readily adopted molecular screening test, low-pass WGS of maternal plasma cell-free DNA for aneuploidy detection generates a vast amount of genomic data. This large-scale method also allows for high-throughput virome screening. NIPT sequencing data, yielding 6.57 terabases of data from 187.8 billion reads, from 12,951 pregnant Turkish women was used to investigate the prevalence and abundance of viral DNA in plasma. Among the 22 virus sequences identified in 12% of participants were human papillomavirus, herpesvirus, betaherpesvirus and anellovirus. We observed a unique pattern of circulating viral DNA with a high prevalence of papillomaviruses. The prevalence of herpesviruses/anellovirus was similar among Turkish, European and Dutch populations. Hepatitis B prevalence was remarkably low in Dutch, European and Turkish populations, but higher in China. WGS data revealed that herpesvirus/anelloviruses are naturally found in European populations. This represents the first comprehensive research on the plasma virome of pregnant Turkish women.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Viral , Embarazo , Humanos , Femenino , ADN Viral/genética , Diagnóstico Prenatal/métodos , Aneuploidia , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Genet Med ; 24(10): 2194-2203, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36001086

RESUMEN

PURPOSE: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. METHODS: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. RESULTS: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. CONCLUSION: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration.


Asunto(s)
Complejo Mediador , Microcefalia , Enfermedades Neurodegenerativas , Animales , Humanos , Homocigoto , Complejo Mediador/genética , Microcefalia/genética , Enfermedades Neurodegenerativas/genética , ARN , Pez Cebra/genética
5.
Clin Case Rep ; 9(8): e04520, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34466237

RESUMEN

The report of LMNB2-related progressive myoclonus epilepsy and ataxia due to missense homozygous c.473G>T variant.

6.
Arch Iran Med ; 20(9): 617-620, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29048924

RESUMEN

The calcium channel, voltage-dependent, L-type, alpha 1S subunit (CACNA1S) gene encodes a skeletal Ca2+ channel which is involved in calcium-dependent processes such as muscle contraction and neurotransmitter release. Mutations in this gene have been accompanied by hypo- and normokalemic periodic paralysis, thyrotoxic periodic paralysis, and susceptibility to malignant hyperthermia. We report the clinical and genetic findings in a patient diagnosed with metabolic myopathy who had episodic attacks of muscle pain and weakness but with no family background of the disease. Next-generation sequencing (NGS) using a panel targeting metabolic myopathy and myotonia genes identified a de novo heterozygous pathogenic variant c.3724A>G, p.Arg1242Gly, in exon 30 of CACNA1S. As the second report of this variant, this case may broaden the CACNA1S-related disease spectrum to include normokalemic periodic paralysis.


Asunto(s)
Canales de Calcio/genética , Enfermedades Musculares/genética , Canales de Calcio Tipo L , Creatina Quinasa/sangre , Análisis Mutacional de ADN , Humanos , Masculino , Mutación , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...