RESUMEN
IRL790 ([2-(3-fluoro-5-methanesulfonylphenoxy)ethyl](propyl)amine, mesdopetam) is a novel compound in development for the clinical management of motor and psychiatric disabilities in Parkinson disease. The discovery of IRL790 was made applying a systems pharmacology approach based on in vivo response profiling. The chemical design idea was to develop a new type of DA D3/D2 receptor type antagonist built on agonist rather than antagonist structural motifs. We hypothesized that such a dopamine antagonist with physicochemical properties similar to agonists would exert antidyskinetic and antipsychotic effects in states of dysregulated dopaminergic signaling while having little negative impact on physiologic dopamine transmission and, hence, minimal liability for side effects related to dopamine-dependent functions. At the level of in vivo pharmacology, IRL790 displays balancing effects on aberrant motor phenotypes, reducing l-DOPA-induced dyskinesias in the rodent 6-hydroxydopamine lesion model and reducing psychostimulant-induced locomotor hyperactivity elicited by pretreatment with either d-amphetamine or dizocilpine, without negatively impacting normal motor performance. Thus, IRL790 has the ability to normalize the behavioral phenotype in hyperdopaminergic as well as hypoglutamatergic states. Neurochemical and immediate early gene (IEG) response profiles suggest modulation of DA neurotransmission, with some features, such as increased DA metabolites and extracellular DA, shared by atypical antipsychotics and others, such as increased frontal cortex IEGs, unique to IRL790. IRL790 also increases extracellular levels of acetylcholine in the prefrontal cortex and ventral hippocampus. At the receptor level, IRL790 appears to act as a preferential DA D3 receptor antagonist. Computational docking studies support preferential affinity at D3 receptors with an agonist-like binding mode. SIGNIFICANCE STATEMENT: This paper reports preclinical pharmacology along with molecular modeling results on IRL790, a novel compound in clinical development for the treatment of motor and psychiatric complications in advanced Parkinson disease. IRL790 is active in models of perturbed dopaminergic and glutamatergic signaling, including rodent 6-hydroxydopamine l-DOPA-induced dyskinesias and psychostimulant-induced hyperactivity, in a dose range that does not impair normal behavior. This effect profile is attributed to interactions at dopamine D2/D3 receptors, with a 6- to 8-fold preference for the D3 subtype.
Asunto(s)
Dopamina/metabolismo , Trastornos Mentales/complicaciones , Trastornos Motores/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Enfermedad de Parkinson/complicaciones , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismoRESUMEN
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.
Asunto(s)
Arritmias Cardíacas/genética , Cardiomiopatía Hipertrófica/mortalidad , Insuficiencia Cardíaca/genética , Proteínas Represoras/genética , Adulto , Animales , Arritmias Cardíacas/mortalidad , Arritmias Cardíacas/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Muerte Súbita Cardíaca/patología , Desmina/genética , Modelos Animales de Enfermedad , Femenino , Ligamiento Genético/genética , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Homocigoto , Humanos , Masculino , Mutación , Linaje , Fenotipo , Pez Cebra/genéticaRESUMEN
Amyloid precursor protein (APP) is a transmembrane glycoprotein that has been the subject of intense research because of its implication in Alzheimer's disease. However, the physiological function of APP in the development and maintenance of the central nervous system remains largely unknown. We have previously shown that the APP homologue in zebrafish (Danio rerio), Appb, is required for motor neuron patterning and formation. Here we study the function of Appb during neurogenesis in the zebrafish hindbrain. Partial knockdown of Appb using antisense morpholino oligonucleotides blocked the formation of the Mauthner neurons, uni- or bilaterally, with an aberrant behavior as a consequence of this cellular change. The Appb morphants had decreased neurogenesis, increased notch signaling and notch1a expression at the expense of deltaA/D expression. The Mauthner cell development could be restored either by a general decrease in Notch signaling through γ-secretase inhibition or by a partial knock down of Notch1a. Together, this demonstrates the importance of Appb in neurogenesis and for the first time shows the essential requirement of Appb in the formation of a specific cell type, the Mauthner cell, in the hindbrain during development. Our results suggest that Appb-regulated neurogenesis is mediated through balancing the Notch1a signaling pathway and provide new insights into the development of the Mauthner cell.
Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Conducta Animal , Diferenciación Celular , Proliferación Celular , Dipéptidos/química , Embrión no Mamífero/metabolismo , Hibridación in Situ , Microscopía Fluorescente , Morfolinos/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis , Neuronas/metabolismo , Oligonucleótidos/genética , Oligonucleótidos Antisentido/genética , Receptores Notch/metabolismo , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
The dopaminergic stabilizers pridopidine [4-(3-(methylsulfonyl)phenyl)-1-propylpiperidine] and ordopidine [1-ethyl-4-(2-fluoro-3-(methylsulfonyl)phenyl)piperidine] inhibit psychostimulant-induced hyperactivity, and stimulate behaviour in states of hypoactivity. While both compounds act as dopamine D2 receptor antagonists in vitro, albeit with low affinity, their specific state-dependent behavioural effect profile is not shared by D2 receptor antagonists in general. To further understand the neuropharmacological effects of pridopidine and ordopidine, and how they differ from other dopaminergic compounds in vivo, we assessed the expression of activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc), an immediate early gene marker associated with synaptic activation, in the frontal cortex and striatum. Furthermore, monoamine neurochemistry and locomotor activity were assessed. The effects of pridopidine and ordopidine were compared to reference dopamine D1 and D2 receptor agonists and antagonists, as well as the partial dopamine D2 agonist aripiprazole. Pridopidine and ordopidine induced significant increases in cortical Arc expression, reaching 2.2- and 1.7-fold levels relative to control, respectively. In contrast, none of the reference dopamine D1 and D2 compounds tested increased cortical Arc expression. In the striatum, significant increases in Arc expression were seen with both pridopidine and ordopidine as well as the dopamine D2 receptor antagonists, remoxipride and haloperidol. Interestingly, striatal Arc expression correlated strongly and positively with striatal 3,4-dihydroxyphenylacetic acid, suggesting that antagonism of dopamine D2 receptors increases Arc expression in the striatum. In conclusion, the concurrent increase in cortical and striatal Arc expression induced by pridopidine and ordopidine appears unique for the dopaminergic stabilizers, as it was not shared by the reference compounds tested. The increase in cortical Arc expression is hypothesized to reflect enhanced N-methyl-D-aspartic acid receptor-mediated signalling in the frontal cortex, which could contribute to the state-dependent locomotor effects of pridopidine and ordopidine.