Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14665, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918510

RESUMEN

Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell-cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. On a per-cell basis, encapsulation in microporous hydrogel induced a 4 × increase in alkaline phosphatase (ALP) activity and calcium mineral deposition in comparison to nonporous hydrogel, as measured by ALP and calcium assays, which indicates more robust osteogenic differentiation. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell-cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair.


Asunto(s)
Diferenciación Celular , Hidrogeles , Células Madre Mesenquimatosas , Osteogénesis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Hidrogeles/química , Porosidad , Fosfatasa Alcalina/metabolismo , Células Cultivadas , Encapsulación Celular/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Inyecciones
2.
Res Sq ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38746476

RESUMEN

Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell-cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. Microporous hydrogel induced more robust osteogenic differentiation of MSCs and calcium mineral deposition than the nonporous hydrogel confirmed by alkaline phosphatase (ALP) assay and calcium assay. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell-cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that the microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair.

3.
Int J Pharm ; 644: 123299, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37558147

RESUMEN

Polyamidoamine (PAMAM) dendrimers have been explored as an alternative to polyethylenimine (PEI) as a gene delivery carrier because of their relatively low cytotoxicity and excellent biocompatibility. The transfection efficiency of PAMAM dendrimers can be improved by the addition of nuclear localization signal (NLS), a positively charged peptide sequence recognized by cargo proteins in the cytoplasm for nuclear transport. However, increased positive charges from NLS can cause damage to the cytoplasmic and mitochondrial membranes and lead to reactive oxygen species (ROS)-induced cytotoxicity. This negative effect of NLS can be negated without a significant reduction in transfection efficiency by adding histidine, an essential amino acid known as a natural antioxidant, to NLS. However, little is known about the exact mechanism by which histidine reduces cytotoxicity of NLS-modified dendrimers. In this study, we selected cystamine core PAMAM dendrimer generation 2 (cPG2) and conjugated it with NLS derived from Merkel cell polyomavirus large T antigen and histidine (n = 0-3) to improve transfection efficiency and reduce cytoxicity. NLS-modified cPG2 derivatives showed similar or higher transfection efficiency than PEI 25 kDa in NIH3T3 and human mesenchymal stem cells (hMSC). The cytotoxicity of NLS-modified cPG2 derivatives was substantially lower than PEI 25 kDa and was further reduced as the number of histidine in NLS increased. To understand the mechanism of cytoprotective effect of histidine-conjugated NLS, we examined ROS scavenging, hydroxyl radical generation and mitochondrial membrane potential as a function of the number of histidine in NLS. As the number of hisidine increased, cPG2 scavenged ROS more effectively as evidenced by the hydroxyl radical antioxidant capacity (HORAC) assay. This was consistent with the reduced intracellular hydroxyl radical concentration measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) assay in NIH3T3. Finally, fluorescence imaging with JC-1 confirmed that the mitochondrial membranes of NIH 3T3 were well-protected during the transfection when NLS contained histidine. These experimental results confirm the hypothesis that histidine residues scavenge ROS that is generated during the transfection process, preventing the excessive damage to mitochondrial membranes, leading to reduced cytotoxicity.


Asunto(s)
Dendrímeros , Señales de Localización Nuclear , Animales , Ratones , Humanos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Histidina , Dendrímeros/química , Células 3T3 NIH , Antioxidantes/farmacología , Radical Hidroxilo , Especies Reactivas de Oxígeno , ADN/química , Técnicas de Transferencia de Gen , Transfección , Supervivencia Celular
4.
ACS Appl Bio Mater ; 5(6): 2786-2794, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35576622

RESUMEN

Injectable hydrogels have previously demonstrated potential as a temporary scaffold for tissue regeneration or as a delivery vehicle for cells, growth factors, or drugs. However, most injectable hydrogel systems lack a microporous structure, preventing host cell migration into the hydrogel interior and limiting spreading and proliferation of encapsulated cells. Herein, an injectable microporous hydrogel assembled from gelatin/gelatin methacryloyl (GelMA) composite microgels is described. Microgels are produced by a water-in-oil emulsion using a gelatin/GelMA aqueous mixture. These microgels show improved thermal stability compared to GelMA-only microgels and benefit from combined photopolymerization using UV irradiation (365 nm) in the presence of a photoinitiator (PI) and enzymatic reaction by microbial transglutaminase (mTG), which together enable fast curing and tissue adhesion of the hydrogel. The dual-crosslinking approach also allows for the reduction of PI concentration and minimizes cytotoxicity during photopolymerization. When applied for in situ cell encapsulation, encapsulated human dermal fibroblasts and human mesenchymal stem cells (hMSCs) are able to rapidly spread and proliferate in the pore space of the hydrogel. This hydrogel has the potential to enhance hMSC anti-inflammatory behavior through the demonstrated secretion of prostaglandin E2 (PGE2) and interleukin-6 (IL-6) by encapsulated cells. Altogether, this injectable formulation has the potential to be used as a cell delivery vehicle for various applications in regenerative medicine.


Asunto(s)
Células Madre Mesenquimatosas , Microgeles , Encapsulación Celular , Gelatina/química , Humanos , Hidrogeles/química , Metacrilatos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...