Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582460

RESUMEN

Microbes play a dominant role in the biogeochemistry of coastal waters, which receive organic matter from diverse sources. We present metagenomes and 45 metagenome-assembled genomes (MAGs) from Sapelo Island, Georgia, to further understand coastal microbial populations. Notably, four MAGs are archaea, with two Thaumarchaeota and two marine group II Euryarchaeota.

4.
mSystems ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854953

RESUMEN

Host-associated microbial dynamics are influenced by dietary and immune factors, but how exogenous microbial exposure shapes host-microbe dynamics remains poorly characterized. To investigate this phenomenon, we characterized the skin, rectum, and respiratory tract-associated microbiota in four aquarium-housed dolphins daily over a period of 6 weeks, including administration of a probiotic during weeks 4 to 6. The environmental bacterial sources were also characterized, including the animals' human handlers, the aquarium air and water, and the dolphins' food supply. Continuous microbial exposure occurred between all sites, yet each environment maintained a characteristic microbiota, suggesting that the majority of exposure events do not result in colonization. Small changes in water physicochemistry had a significant but weak correlation with change in dolphin-associated bacterial richness but had no influence on phylogenetic diversity. Food and air microbiota were the richest and had the largest conditional influence on other microbiota in the absence of probiotics, but during probiotic administration, food alone had the largest influence on the stability of the dolphin microbiota. Our results suggest that respiratory tract and gastrointestinal epithelium interactions with air- and food-associated microbes had the biggest influence on host-microbiota dynamics, while other interactions, such as skin transmission, played only a minor role. Finally, direct oral stimulation with a foreign exogenous microbial source can have a profound effect on microbial stability. IMPORTANCE These results provide valuable insights into the ecological influence of exogenous microbial exposure, as well as laying the foundation for improving aquarium management practices. By comparing data for dolphins from aquaria that use natural versus artificial seawater, we demonstrate the potential influence of aquarium water disinfection procedures on dolphin microbial dynamics.

5.
Front Microbiol ; 9: 14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29445359

RESUMEN

We compared the composition of microbial communities obtained by sequencing 16S rRNA gene amplicons with taxonomy derived from metatranscriptomes from the same samples. Samples were collected from alkaline, hypersaline Mono Lake, California, USA at five depths that captured the major redox zones of the lake during the onset of meromixis. The prokaryotic community was dominated by bacteria from the phyla Proteobacteria, Firmicutes, and Bacteroidetes, while the picoeukaryotic chlorophyte Picocystis dominated the eukaryotes. Most (80%) of the abundant (>1% relative abundance) OTUs recovered as amplicons of 16S rRNA genes have been reported in previous surveys, indicating that Mono Lake's microbial community has remained stable over 12 years that have included periods of regular, annual overturn interspersed by episodes of prolonged meromixis that result in extremely reducing conditions in bottom water. Metatranscriptomic sequences binned predominately to the Gammaproteobacteria genera Thioalkalivibrio (4-13%) and Thioalkalimicrobium (0-14%); and to the Firmicutes genera Dethiobacter (0-5%) and Clostridium (1-4%), which were also abundant in the 16S rRNA gene amplicon libraries. This study provides insight into the taxonomic affiliations of transcriptionally active communities of the lake's water column under different redox conditions.

6.
ISME J ; 11(10): 2195-2208, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28548659

RESUMEN

This study evaluates the transcriptionally active, dissimilatory sulfur- and arsenic-cycling components of the microbial community in alkaline, hypersaline Mono Lake, CA, USA. We sampled five depths spanning the redox gradient (10, 15, 18, 25 and 31 m) during maximum thermal stratification. We used custom databases to identify transcripts of genes encoding complex iron-sulfur molybdoenzyme (CISM) proteins, with a focus on arsenic (arrA, aioA and arxA) and sulfur cycling (dsrA, aprA and soxB), and assigned them to taxonomic bins. We also report on the distribution of transcripts related to the ars arsenic detoxification pathway. Transcripts from detoxification pathways were not abundant in oxic surface waters (10 m). Arsenic cycling in the suboxic and microaerophilic zones of the water column (15 and 18 m) was dominated by arsenite-oxidizing members of the Gammaproteobacteria most closely affiliated with Thioalkalivibrio and Halomonas, transcribing arxA. We observed a transition to arsenate-reducing bacteria belonging to the Deltaproteobacteria and Firmicutes transcribing arsenate reductase (arrA) in anoxic bottom waters of the lake (25 and 31 m). Sulfur cycling at 15 and 18 m was dominated by Gammaproteobacteria (Thioalkalivibrio and Thioalkalimicrobium) oxidizing reduced S species, with a transition to sulfate-reducing Deltaproteobacteria at 25 and 31 m. Genes related to arsenic and sulfur oxidation from Thioalkalivibrio were more highly transcribed at 15 m relative to other depths. Our data highlight the importance of Thioalkalivibrio to arsenic and sulfur biogeochemistry in Mono Lake and identify new taxa that appear capable of transforming arsenic.


Asunto(s)
Arsénico/metabolismo , Bacterias/genética , Lagos/microbiología , Azufre/metabolismo , Arseniato Reductasas/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , California , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Deltaproteobacteria/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/metabolismo , Perfilación de la Expresión Génica , Oxidación-Reducción
7.
FEMS Microbiol Ecol ; 90(3): 858-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25318694

RESUMEN

Thioarsenates are the dominant arsenic species in arsenic-rich, alkaline, and sulfidic waters, but bacterial interactions with these compounds have only recently been examined. Previous studies have shown that microorganisms play a role in the transformation of monothioarsenate to arsenate, including use of monothioarsenate as a chemolithotrophic electron donor coupled with oxygen as an electron acceptor. We obtained enrichment cultures from two saline, alkaline lakes (Mono Lake, CA and Big Soda Lake, NV) that are able to use monothioarsenate as the sole electron donor for anoxygenic photosynthesis. These anoxic cultures were able to convert a 1 mM mixture of thioarsenates completely to arsenate in c. 13 days and 4 mM monothioarsenate to arsenate in c. 17 days. This conversion was light dependent; thus, monothioarsenate can be used as the sole electron donor for anoxygenic photosynthesis. Both of the Mono Lake and Big Soda Lake enrichment cultures were dominated by an organism closely related to Ectothiorhodospira species. We tested additional strains of purple sulfur bacteria and found widespread ability to use monothioarsenate as an electron donor. The ability of bacteria to transform thioarsenates directly via anoxygenic photosynthesis adds a new perspective to the well-studied arsenic and sulfur cycles.


Asunto(s)
Arseniatos/metabolismo , Chromatiaceae/metabolismo , Ectothiorhodospira/metabolismo , Fotosíntesis/fisiología , Azufre/metabolismo , Chromatiaceae/crecimiento & desarrollo , Ectothiorhodospira/crecimiento & desarrollo , Luz , Tolerancia a la Sal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...