Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4162, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443109

RESUMEN

The current obesity epidemic and high prevalence of metabolic diseases necessitate efficacious and safe treatments. Brown adipose tissue in this context is a promising target with the potential to increase energy expenditure, however no pharmacological treatments activating brown adipose tissue are currently available. Here, we identify AXL receptor tyrosine kinase as a regulator of adipose function. Pharmacological and genetic inhibition of AXL enhance thermogenic capacity of brown and white adipocytes, in vitro and in vivo. Mechanistically, these effects are mediated through inhibition of PI3K/AKT/PDE signaling pathway, resulting in induction of nuclear FOXO1 localization and increased intracellular cAMP levels via PDE3/4 inhibition and subsequent stimulation of the PKA-ATF2 pathway. In line with this, both constitutive Axl deletion as well as inducible adipocyte-specific Axl deletion protect animals from diet-induced obesity concomitant with increases in energy expenditure. Based on these data, we propose AXL receptor as a target for the treatment of obesity.


Asunto(s)
Tejido Adiposo Pardo , Tirosina Quinasa del Receptor Axl , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Obesidad/metabolismo , Adipocitos Blancos/metabolismo , Metabolismo Energético , Tejido Adiposo Blanco/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo
2.
Mol Metab ; 74: 101746, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37286033

RESUMEN

Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Humanos , Animales , Ratones , Adipogénesis/genética , RNA-Seq , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular/genética , Proteínas Represoras/genética
3.
Curr Diab Rep ; 22(4): 177-187, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35267142

RESUMEN

PURPOSE OF REVIEW: The purpose of the current review is to summarize findings from the most recent and impactful studies which investigated human and mouse adipose tissue transcriptomes at a single-cell level. We provide perspective about the potential importance of data derived from these single-cell technologies in improving our understanding of the adipose organ and metabolic disease and likely future directions of this approach. RECENT FINDINGS: The majority of single-cell or single-nuclei studies of the adipose organ so far have focused on investigating the stromal-vascular fraction (SVF) of mouse subcutaneous and intraabdominal white and interscapular brown fat depots. Few studies have also evaluated the impact of additional factors as drivers of adipose phenotypes, such as high-fat diet-induced obesity, adolescence, aging, and cold exposure. Recent studies have also investigated human cell lines and human fat biopsies across a range of body mass index (BMI) and in response to insulin resistance or T2D. These studies have identified numerous previously unexplored subpopulations of adipocyte progenitors, immune cells, and mature adipocytes in both mice and men. Single-cell and single-nuclei technologies have brought an explosion of data that have advanced our understanding of the adipose organ in health and disease. However, we are still at the dawn of achieving a complete and comprehensive map of the mouse and human adipose organ. Multi-modal single-cell approaches to identify both anatomic localization of specific cellular populations and epigenetic mechanisms responsible for observed transcriptomic patterns are underway and will likely provide an even deeper understanding of the adipose organ in response to health and disease.


Asunto(s)
Tejido Adiposo Pardo , Resistencia a la Insulina , Adipocitos , Tejido Adiposo/metabolismo , Índice de Masa Corporal , Humanos , Obesidad/genética , Obesidad/metabolismo
4.
Diabetes ; 71(5): 1023-1033, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100352

RESUMEN

Epigenetic regulation is an important factor in glucose metabolism, but underlying mechanisms remain largely unknown. Here we investigated epigenetic control of systemic metabolism by bromodomain-containing proteins (Brds), which are transcriptional regulators binding to acetylated histone, in both intestinal cells and mice treated with the bromodomain inhibitor JQ-1. In vivo treatment with JQ-1 resulted in hyperglycemia and severe glucose intolerance. Whole-body or tissue-specific insulin sensitivity was not altered by JQ-1; however, JQ-1 treatment reduced insulin secretion during both in vivo glucose tolerance testing and ex vivo incubation of isolated islets. JQ-1 also inhibited expression of fibroblast growth factor (FGF) 15 in the ileum and decreased FGF receptor 4-related signaling in the liver. These adverse metabolic effects of Brd4 inhibition were fully reversed by in vivo overexpression of FGF19, with normalization of hyperglycemia. At a cellular level, we demonstrate Brd4 binds to the promoter region of FGF19 in human intestinal cells; Brd inhibition by JQ-1 reduces FGF19 promoter binding and downregulates FGF19 expression. Thus, we identify Brd4 as a novel transcriptional regulator of intestinal FGF15/19 in ileum and FGF signaling in the liver and a contributor to the gut-liver axis and systemic glucose metabolism.


Asunto(s)
Hiperglucemia , Proteínas Nucleares , Animales , Epigénesis Genética , Factores de Crecimiento de Fibroblastos/metabolismo , Glucosa , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Commun ; 12(1): 7144, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880217

RESUMEN

Activation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGFß signalling pathway and regulates the activity of the TGFß receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGFß signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Termogénesis/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Animales , Metabolismo Energético , Proteínas de la Matriz Extracelular/genética , Glucosa , Homeostasis , Humanos , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Termogénesis/genética
6.
Nat Commun ; 12(1): 6951, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845204

RESUMEN

To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR's mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling.Trial Registration: Clinicaltrials.gov NCT01073020.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Derivación Gástrica , Hígado/metabolismo , Metaboloma , Obesidad/sangre , Proteoma , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Índice de Masa Corporal , Proteínas Portadoras/sangre , Proteínas Portadoras/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/cirugía , Dipeptidasas/sangre , Dipeptidasas/genética , Ayuno/fisiología , Regulación de la Expresión Génica , Hemoglobina Glucada/genética , Hemoglobina Glucada/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hormona de Crecimiento Humana/sangre , Hormona de Crecimiento Humana/genética , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Hígado/patología , Obesidad/genética , Obesidad/patología , Obesidad/cirugía , Cultivo Primario de Células , Ratas , Estudios Retrospectivos
7.
EJNMMI Res ; 10(1): 5, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974702

RESUMEN

BACKGROUND: Positron emission tomography (PET) is increasingly applied for in vivo brown adipose tissue (BAT) research in healthy volunteers. To limit the radiation exposure, the injected 18F-FDG tracer dose should be as low as possible. With simultaneous PET/MR imaging, the radiation exposure due to computed tomography (CT) can be avoided, but more importantly, the PET acquisition time can often be increased to match the more extensive magnetic resonance (MR) imaging protocol. The potential gain in detected coincidence counts, due to the longer acquisition time, can then be applied to decrease the injected tracer dose. The aim of this study was to investigate the minimal 18F-FDG dose for a 10-min time-of-flight (TOF) PET/MR acquisition that would still allow accurate quantification of supraclavicular BAT volume and activity. METHODS: Twenty datasets from 13 volunteers were retrospectively included from a prospective clinical study. PET emission datasets were modified to simulate step-wise reductions of the original 75 MBq injected dose. The resulting PET images were visually and quantitatively assessed and compared to a 4-min reference scan. For the visual assessment, the image quality and artifacts were scored using a 5-point and a 3-point Likert scale. For the quantitative analysis, image noise and artifacts, BAT metabolic activity, BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were investigated. RESULTS: The visual assessment showed still good image quality for the 35%, 30%, and 25% activity reconstructions with no artifacts. Quantitatively, the background noise was similar to the reference for the 35% and 30% activity reconstructions and the artifacts started to increase significantly in the 25% and lower activity reconstructions. There was no significant difference in supraclavicular BAT metabolic activity, BMV, and TBG between the reference and the 35% to 20% activity reconstructions. CONCLUSIONS: This study indicates that when the PET acquisition time is matched to the 10-min MRI protocol, the injected 18F-FDG tracer dose can be reduced to approximately 19 MBq (25%) while maintaining image quality and accurate supraclavicular BAT quantification. This could decrease the effective dose from 1.4 mSv to 0.36 mSv.

8.
Diabetologia ; 62(11): 2094-2105, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31309261

RESUMEN

AIMS/HYPOTHESIS: In the context of diabetes, the health benefit of antioxidant treatment has been widely debated. In this study, we investigated the effect of antioxidant treatment during the development of insulin resistance and hyperphagia in obesity and partial lipodystrophy. METHODS: We studied the role of antioxidants in the regulation of insulin resistance using the tamoxifen-inducible fat-specific insulin receptor knockout (iFIRKO) mouse model, which allowed us to analyse the antioxidant's effect in a time-resolved manner. In addition, leptin-deficient ob/ob mice were used as a hyperphagic, chronically obese and diabetic mouse model to validate the beneficial effect of antioxidants on metabolism. RESULTS: Acute induction of insulin receptor knockout in adipocytes changed the substrate preference to fat before induction of a diabetic phenotype including hyperinsulinaemia and hyperglycaemia. In healthy chow-fed animals as well as in morbidly obese mice, this diabetic phase could be reversed within a few weeks. Furthermore, after the induction of insulin receptor knockout in mature adipocytes, iFIRKO mice were protected from subsequent obesity development through high-fat diet feeding. By genetic tracing we show that the persistent fat mass loss in mice after insulin receptor knockout in adipocytes is not caused by the depletion of adipocytes. Treatment of iFIRKO mice with antioxidants postponed and reduced hyperglycaemia by increasing insulin sensitivity. In ob/ob mice, antioxidants rescued both hyperglycaemia and hyperphagia. CONCLUSIONS/INTERPRETATION: We conclude that fat mass reduction through insulin resistance in adipocytes is not reversible. Furthermore, it seems unlikely that adipocytes undergo apoptosis during the process of extreme lipolysis, as a consequence of insulin resistance. Antioxidants have a beneficial health effect not only during the acute phase of diabetes development, but also in a temporary fashion once chronic obesity and diabetes have been established.


Asunto(s)
Antioxidantes/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Obesidad Mórbida/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Glucemia/metabolismo , Calorimetría , Modelos Animales de Enfermedad , Homeostasis , Hiperinsulinismo/metabolismo , Hiperfagia/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Lipodistrofia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad Mórbida/complicaciones , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(21): 10547-10556, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061112

RESUMEN

There is a growing body of evidence linking maternal overnutrition to obesity and psychopathology that can be conserved across multiple generations. Recently, we demonstrated in a maternal high-fat diet (HFD; MHFD) mouse model that MHFD induced enhanced hedonic behaviors and obesogenic phenotypes that were conserved across three generations via the paternal lineage, which was independent of sperm methylome changes. Here, we show that sperm tRNA-derived small RNAs (tsRNAs) partly contribute to the transmission of such phenotypes. We observe increased expression of sperm tsRNAs in the F1 male offspring born to HFD-exposed dams. Microinjection of sperm tsRNAs from the F1-HFD male into normal zygotes reproduces obesogenic phenotypes and addictive-like behaviors, such as increased preference of palatable foods and enhanced sensitivity to drugs of abuse in the resultant offspring. The expression of several of the differentially expressed sperm tsRNAs predicted targets such as CHRNA2 and GRIN3A, which have been implicated in addiction pathology, are altered in the mesolimbic reward brain regions of the F1-HFD father and the resultant HFD-tsRNA offspring. Together, our findings demonstrate that sperm tsRNA is a potential vector that contributes to the transmission of MHFD-induced addictive-like behaviors and obesogenic phenotypes across generations, thereby emphasizing its role in diverse pathological outcomes.


Asunto(s)
Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/genética , Efectos Tardíos de la Exposición Prenatal , ARN/metabolismo , Espermatozoides/metabolismo , Animales , Conducta Adictiva , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Ratones , Fenotipo , Embarazo
10.
Cell Metab ; 29(4): 901-916.e8, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30581121

RESUMEN

Recent research focusing on brown adipose tissue (BAT) function emphasizes its importance in systemic metabolic homeostasis. We show here that genetic and pharmacological inhibition of the mevalonate pathway leads to reduced human and mouse brown adipocyte function in vitro and impaired adipose tissue browning in vivo. A retrospective analysis of a large patient cohort suggests an inverse correlation between statin use and active BAT in humans, while we show in a prospective clinical trial that fluvastatin reduces thermogenic gene expression in human BAT. We identify geranylgeranyl pyrophosphate as the key mevalonate pathway intermediate driving adipocyte browning in vitro and in vivo, whose effects are mediated by geranylgeranyltransferases (GGTases), enzymes catalyzing geranylgeranylation of small GTP-binding proteins, thereby regulating YAP1/TAZ signaling through F-actin modulation. Conversely, adipocyte-specific ablation of GGTase I leads to impaired adipocyte browning, reduced energy expenditure, and glucose intolerance under obesogenic conditions, highlighting the importance of this pathway in modulating brown adipocyte functionality and systemic metabolism.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Ácido Mevalónico/farmacología , Prenilación de Proteína/efectos de los fármacos , Proteína Desacopladora 1/antagonistas & inhibidores , Adipocitos Marrones/metabolismo , Adolescente , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos , Persona de Mediana Edad , Proteína Desacopladora 1/metabolismo , Adulto Joven
11.
Nat Med ; 24(11): 1776, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30087435

RESUMEN

In the version of this article originally published, the months on the axis labeled projected month of conception in Fig. 1a were out of order. April and March should have been the first and last months listed, respectively. The error has been corrected in the print, PDF and HTML versions of this article.

12.
Nat Med ; 24(11): 1777, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30087436

RESUMEN

In the version of this article originally published, the bars in the mean temperature graph in Fig. 1a were incorrectly aligned. The left-most bar should have been aligned with the Apr label on the projected month of conception axis. The error has been corrected in the print, PDF and HTML versions of this article.

13.
Nat Med ; 24(9): 1372-1383, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29988127

RESUMEN

Recent research has focused on environmental effects that control tissue functionality and systemic metabolism. However, whether such stimuli affect human thermogenesis and body mass index (BMI) has not been explored. Here we show retrospectively that the presence of brown adipose tissue (BAT) and the season of conception are linked to BMI in humans. In mice, we demonstrate that cold exposure (CE) of males, but not females, before mating results in improved systemic metabolism and protection from diet-induced obesity of the male offspring. Integrated analyses of the DNA methylome and RNA sequencing of the sperm from male mice revealed several clusters of co-regulated differentially methylated regions (DMRs) and differentially expressed genes (DEGs), suggesting that the improved metabolic health of the offspring was due to enhanced BAT formation and increased neurogenesis. The conclusions are supported by cell-autonomous studies in the offspring that demonstrate an enhanced capacity to form mature active brown adipocytes, improved neuronal density and more norepinephrine release in BAT in response to cold stimulation. Taken together, our results indicate that in humans and in mice, seasonal or experimental CE induces an epigenetic programming of the sperm such that the offspring harbor hyperactive BAT and an improved adaptation to overnutrition and hypothermia.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Frío , Epigénesis Genética , Espermatozoides/metabolismo , Adipocitos Marrones/metabolismo , Animales , Metilación de ADN/genética , Dieta Alta en Grasa , Femenino , Células HEK293 , Humanos , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Neurogénesis , Obesidad/metabolismo , Consumo de Oxígeno , Embarazo , Análisis de Componente Principal , Receptores Adrenérgicos beta 3/metabolismo , Proteína Desacopladora 1/metabolismo
14.
PLoS One ; 12(1): e0170643, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125644

RESUMEN

Active brown adipose tissue is responsible for non-shivering thermogenesis in mammals which affects energy homeostasis. The molecular mechanisms underlying this activation as well as the formation and activation of brite adipocytes have gained increasing interest in recent years as they might be utilized to regulate systemic metabolism. We show here that the transcriptional regulators SRF and MKL1 both act as repressors of brown adipogenesis. Loss-of-function of these transcription factors leads to a significant induction of brown adipocyte differentiation, increased levels of UCP1 and other thermogenic genes as well as increased respiratory function, while SRF induction exerts the opposite effects. Interestingly, we observed that knockdown of MKL1 does not lead to a reduced expression of typical SRF target genes and that the SRF/MKL1 inhibitor CCG-1423 had no significant effects on brown adipocyte differentiation. Contrary, knockdown of MKL1 induces a significant increase in the transcriptional activity of PPARγ target genes and MKL1 interacts with PPARγ, suggesting that SRF and MKL1 independently inhibit brown adipogenesis and that MKL1 exerts its effect mainly by modulating PPARγ activity.


Asunto(s)
Adipogénesis/genética , PPAR gamma/genética , Proteínas Quinasas/genética , Transactivadores/genética , Adipocitos Marrones/metabolismo , Adipogénesis/efectos de los fármacos , Tejido Adiposo Pardo/crecimiento & desarrollo , Tejido Adiposo Pardo/metabolismo , Anilidas/administración & dosificación , Animales , Benzamidas/administración & dosificación , Diferenciación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , PPAR gamma/biosíntesis , Termogénesis/genética , Transactivadores/antagonistas & inhibidores , Activación Transcripcional/genética
15.
Food Funct ; 6(3): 963-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25662939

RESUMEN

Corinthian currants are a rich source of phenolic compounds, which are known to exert beneficial effects on cardiovascular disease. The hypothesis tested is whether dietary supplementation with currants attenuates atherosclerosis and affects plasma phenolics during prolonged hypercholesterolemia in rabbits. Thirty New Zealand White rabbits were fed one of four diets (normal and supplemented with 10% currants, with 0.5% cholesterol, and with 0.5% cholesterol plus 10% currants) for eight weeks. Plasma lipids, glucose and hepatic enzymes were determined. Individual phenolic compounds were identified and quantified in plasma during the dietary intervention. At the end of the study, histological examinations of aorta and liver were performed. The high-cholesterol diet resulted in hypercholesterolemia and oxidative stress, increased aspartate aminotransferase (AST) activity and induced aortic and hepatic lesion formation. Corinthian currant supplementation attenuated atherosclerotic lesions, maintained AST within the normal range and reduced oxidative stress without affecting glucose concentrations. The p-OH-benzoic and p-OH-phenylacetic acids predominated at high concentrations in plasma and remained almost constant during the study in the group that received the normal rabbit chow and the groups given food with added cholesterol either alone or supplemented with currants. Currant supplementation to the normal diet resulted in the reduced absorption of phenolic compounds, as revealed by the measurement of their plasma metabolites, suggesting a regulatory mechanism at the gut level under normal conditions.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antioxidantes/uso terapéutico , Aterosclerosis/prevención & control , Suplementos Dietéticos , Extracto de Semillas de Uva/uso terapéutico , Hipercolesterolemia/dietoterapia , Fenoles/sangre , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antioxidantes/efectos adversos , Aorta/inmunología , Aorta/patología , Aterosclerosis/etiología , Colesterol en la Dieta/efectos adversos , Suplementos Dietéticos/efectos adversos , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Frutas/química , Frutas/crecimiento & desarrollo , Alimentos Funcionales/análisis , Fármacos Gastrointestinales/efectos adversos , Fármacos Gastrointestinales/uso terapéutico , Extracto de Semillas de Uva/efectos adversos , Grecia , Hipercolesterolemia/inmunología , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatología , Hígado/inmunología , Hígado/patología , Masculino , Estrés Oxidativo , Fenoles/antagonistas & inhibidores , Fenoles/metabolismo , Conejos , Distribución Aleatoria , Vitis/química , Vitis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...