Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731700

RESUMEN

An experimental study is presented on the possibility of using the fluorescence from organic dyes as a broadband light source together with a monochromator for applications in excitation-emission matrix (EEM) fluorescence spectroscopy. A high-power single-chip light-emitting diode (LED) was chosen as an excitation source with a central output wavelength at 365 nm to excite a fluorescent solution of Coumarin 1 dye dissolved in ethanol. Two excitation configurations were investigated: direct excitation from the LED and excitation through an optical-fiber-coupled LED. A Czerny-Turner monochromator with a diffraction grating was used for the spectral tuning of the fluorescence. A simple method was investigated for increasing the efficiency of the excitation as well as the fluorescence signal collection by using a diffuse reflector composed of barium sulfate (BaSO4) and polyvinyl alcohol (PVA). As research objects, extra-virgin olive oil (EVOO), Coumarin 6 dye, and Perylene, a polycyclic aromatic hydrocarbon (PAH), were used. The results showed that the light-emitting-diode-induced fluorescence was sufficient to cover the losses on the optical path to the monochromator output, where a detectable signal could be obtained. The obtained results reveal the practical possibility of applying the fluorescence from dyes as a light source for food system analysis by EEM fluorescence spectroscopy.

2.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38610328

RESUMEN

Given the medical and social significance of Helicobacter pylori infection, timely and reliable diagnosis of the disease is required. The traditional invasive and non-invasive conventional diagnostic techniques have several limitations. Recently, opportunities for new diagnostic methods have appeared based on the recent advance in the study of H. pylori outer membrane proteins and their identified receptors. In the present study we assess the way in which outer membrane protein-cell receptor reactions are applicable in establishing a reliable diagnosis. Herein, as well as in other previous studies of ours, we explore the reliability of the binding reaction between the best characterized H. pylori adhesin BabA and its receptor, the blood antigen Leb. For the purpose we developed surface plasmon resonance (SPR) and double resonance long period grating (DR LPG) biosensors based on the BabA-Leb binding reaction for diagnosing H. pylori infection. In SPR detection, the sensitivity was estimated at 3000 CFU/mL-a much higher sensitivity than that of the RUT test. The DR LPG biosensor proved to be superior in terms of accuracy and sensitivity-concentrations as low as 102 CFU/mL were detected.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Resonancia por Plasmón de Superficie , Infecciones por Helicobacter/diagnóstico , Reproducibilidad de los Resultados , Antígenos Bacterianos
3.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067679

RESUMEN

We report on a study of the temperature dependence of the response of a BSO crystal based polarimetric current sensor with spectral interrogation. Two possible interrogation schemes are discussed. The spectral dependence of the optical rotation along the crystal caused by temperature and current changes is investigated, and approximate dependences for the sensitivities to current SI and temperature ST are derived. A mixed term in the response with spectral interrogation is revealed, the elimination of which is achieved by tracking wavelength shifts Δλ1 and Δλ2 of two distinct extrema in the polarimetric response. A temperature independent second degree equation for the current changes ΔI as a function of the measured spectral shifts is derived and tested.

4.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992057

RESUMEN

One of the first clinical observations related to COVID-19 identified hematological dysfunctions. These were explained by theoretical modeling, which predicted that motifs from SARS-CoV-2 structural proteins could bind to porphyrin. At present, there is very little experimental data that could provide reliable information about possible interactions. The surface plasmon resonance (SPR) method and double resonance long period grating (DR LPG) were used to identify the binding of S/N protein and the receptor bind domain (RBD) to hemoglobin (Hb) and myoglobin (Mb). SPR transducers were functionalized with Hb and Mb, while LPG transducers, were only with Hb. Ligands were deposited by the matrix-assisted laser evaporation (MAPLE) method, which guarantees maximum interaction specificity. The experiments carried out showed S/N protein binding to Hb and Mb and RBD binding to Hb. Apart from that, they demonstrated that chemically-inactivated virus-like particles (VLPs) interact with Hb. The binding activity of S/N- and RBD proteins was assessed. It was found that protein binding fully inhibited heme functionality. The registered N protein binding to Hb/Mb is the first experimental fact that supports theoretical predictions. This fact suggests another function of this protein, not only binding RNA. The lower RBD binding activity reveals that other functional groups of S protein participate in the interaction. The high-affinity binding of these proteins to Hb provides an excellent opportunity for assessing the effectiveness of inhibitors targeting S/N proteins.


Asunto(s)
Hemoglobinas , Mioglobina , Proteínas Estructurales Virales , Humanos , COVID-19 , Hemoglobinas/química , Mioglobina/química , Unión Proteica , SARS-CoV-2 , Resonancia por Plasmón de Superficie , Proteínas Estructurales Virales/química
5.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36979530

RESUMEN

The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Virosis , Humanos , Resonancia por Plasmón de Superficie/métodos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biosensibles/métodos
6.
Sensors (Basel) ; 20(13)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635648

RESUMEN

Selected optical fiber sensors offer extraordinary sensitivity to changes in external refractive (RI), which make them promising for label-free biosensing. In this work the most sensitive ones, namely long-period gratings working at (DTP-LPG) and micro-cavity in-line Mach-Zehnder interferometers (µIMZI) are discussed for application in bacteria sensing. We describe their working principles and RI sensitivity when operating in water environments, which is as high as 20,000 nm/RIU (Refractive index unit) for DTP-LPGs and 27,000 nm/RIU for µIMZIs. Special attention is paid to the methods to enhance the sensitivity by etching and nano-coatings. While the DTP-LPGs offer a greater interaction length and sensitivity to changes taking place at their surface, the µIMZIs are best suited for investigations of sub-nanoliter and picoliter volumes. The capabilities of both the platforms for bacteria sensing are presented and compared for strains of Escherichia coli, lipopolysaccharide E. coli, outer membrane proteins of E. coli, and Staphylococcus aureus. While DTP-LPGs have been more explored for bacteria detection in 102-106 Colony Forming Unit (CFU)/mL for S. aureus and 103-109 CFU/mL for E. coli, the µIMZIs reached 102-108 CFU/mL for E. coli and have a potential for becoming picoliter bacteria sensors.


Asunto(s)
Técnicas Biosensibles , Escherichia coli/aislamiento & purificación , Fibras Ópticas , Staphylococcus aureus/aislamiento & purificación , Refractometría
7.
Data Brief ; 30: 105641, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32420429

RESUMEN

Matrix-assisted pulsed laser evaporation (MAPLE) is an alternative and complimentary method to pulsed laser deposition. MAPLE has been demonstrated to be a less harmful approach for transporting and depositing delicate, highly sensitive molecules. Metalloproteins are considered sensitive molecules since their bioactivity is determined not only by their chemical structure but also by conformational changes that can be altered by deposition methods. Here we report a dataset of MAPLE deposition parameters of haemoglobin (Hb) that ensures the retention of its bioactivity. Methods for parameters optimization are also described. The data and analysis should be valuable for researchers interested in application of MAPLE techniques for metalloprotein immobilization since it provides a unique opportunity for direct immobilization. The data presents the results of previously conducted experiments on the basis of which is based the research article entitled "A Highly Efficient Biosensor based on MAPLE Deposited Hemoglobin on LPGs Around Phase Matching Turning Point" [1].

8.
Sensors (Basel) ; 18(7)2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037077

RESUMEN

In this work, we report the experimental results on optimizing the optical structure for ambient refractive index measuring with temperature changes monitoring. The presented optical structure is based on a dual-resonance long-period grating embedded inside a fiber loop mirror, where the long-period grating acts as the head of the refractive-index sensor, whereas the section of polarization maintaining fiber in the loop mirror ensures suitable temperature sensing. The optimization process was comprised of tuning the resonance and interferometric peaks by changing the state of polarization of propagating beams. Experimental results establish that the response of the proposed sensor structure is linear and goes in opposite directions: an increase in the ambient refractive index reduces the signal response, whereas a temperature increase produces an increased response. This enables us to distinguish between the signals from changes in the refractive index and temperature. Due to the filtering properties of the interferometric structure, it is possible to monitor variation in these physical parameters by observing optical power changes instead of wavelength shifts. Hence, the refractive index sensitivity has been established up to 2375.8 dB/RIU in the narrow RI range (1.333⁻1.341 RIU) and temperature sensitivities up to 1.1 dBm/°C in the range of 23⁻41 °C. The proposed sensor is dedicated to advanced chemical and biological sensor applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA