Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Antibiotics (Basel) ; 13(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534706

RESUMEN

Infectious diseases are a significant challenge to global healthcare, especially in the face of increasing antibiotic resistance. This urgent issue requires the continuous exploration and development of new antimicrobial drugs. In this regard, the secondary metabolites derived from endophytic microorganisms stand out as promising sources for finding antimicrobials. Endophytic microorganisms, residing within the internal tissues of plants, have demonstrated the capacity to produce diverse bioactive compounds with substantial pharmacological potential. Therefore, numerous new antimicrobial compounds have been isolated from endophytes, particularly from endophytic fungi and actinomycetes. However, only a limited number of these compounds have been subjected to comprehensive studies regarding their mechanisms of action against bacterial cells. Furthermore, the investigation of their effects on antibiotic-resistant bacteria and the identification of biosynthetic gene clusters responsible for synthesizing these secondary metabolites have been conducted for only a subset of these promising compounds. Through a comprehensive analysis of current research findings, this review describes the mechanisms of action of antimicrobial drugs and secondary metabolites isolated from endophytes, antibacterial activities of the natural compounds derived from endophytes against antibiotic-resistant bacteria, and biosynthetic gene clusters of endophytic fungi responsible for the synthesis of bioactive secondary metabolites.

3.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38364305

RESUMEN

The holobiont Holobiont theory is more than 80 years old, while the importance of microbial communities for plant holobionts was already identified by Lorenz Hiltner more than a century ago. Both concepts are strongly supported by results from the new field of microbiome research. Here, we present ecological and genetic features of the plant holobiont that underpin principles of a shared governance between hosts and microbes and summarize the relevance of plant holobionts in the context of global change. Moreover, we uncover knowledge gaps that arise when integrating plant holobionts in the broader perspective of the holobiome as well as one and planetary health concepts. Action is needed to consider interacting holobionts at the holobiome scale, for prediction and control of microbiome function to improve human and environmental health outcomes.


Asunto(s)
Microbiota , Salud Única , Humanos , Anciano de 80 o más Años , Simbiosis , Plantas
5.
Antibiotics (Basel) ; 12(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37508297

RESUMEN

According to the World Health Organization, it is estimated that by 2050, drug-resistant infections could cause up to 10 million deaths annually. Therefore, finding a new generation of antibiotics is crucial. Natural compounds from endophytic fungi are considered a potential source of new-generation antibiotics. The antimicrobial and cytotoxic effects of ethyl acetate extracts of nine endophytic fungal isolates obtained from Hyssopus officinalis were investigated for bioassay-guided isolation of the natural compounds. An extract of isolate VII showed the highest antimicrobial activities against Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus (30.12 ± 0.20 mm and 35.21 ± 0.20 mm) and Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa (30.41 ± 0.23 mm and 25.12 ± 0.25 mm) among the tested extracts of isolates. Molecular identification of isolate VII confirmed it as Chaetomium elatum based on sequencing of its ITS genes, and it was discovered that this was the first time C. elatum had been isolated from H. officinalis. This isolate was cultured at a large scale for the isolation and identification of the active compound. Penicillic acid was isolated for the first time from C. elatum and its chemical structure was established by NMR spectroscopy. The penicillic acid showed strong antibacterial activities against Bacillus subtilis and Staphylococcus aureus with 20.68 mm and 25.51 mm inhibition zones, respectively. In addition, MIC and MBC values and antibiofilm activities of penicillic acid were determined. It was found that penicillic acid reduced the level of biofilms in proportion to antibacterial activity.

6.
Sci Total Environ ; 886: 163968, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37164068

RESUMEN

Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.


Asunto(s)
Inoculantes Agrícolas , Contaminantes del Suelo , Agricultura , Carbono , Carbón Orgánico , Suelo/química , Contaminantes del Suelo/análisis
8.
mSystems ; 8(1): e0099422, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36625585

RESUMEN

The dried-out Aral Sea basin represents an extreme environment due to a man-made ecological disaster. Studies conducted in this unique environment revealed high levels of pollution and a specifically adapted microbiota; however, viral populations remained entirely unexplored. By employing an in-depth analysis based on the sequencing of metagenomic DNA recovered from rhizosphere samples of Suaeda acuminata (C. A. Mey.) Moq. along a desiccation gradient of 5, 10, and 40 years, we detected a diverse viral community comprising 674 viral populations (viral operational taxonomic units [vOTUs]) dominated by Caudovirales. Targeted analyses highlighted that viral populations in this habitat are subjected to certain dynamics that are driven mainly by the gradient of desiccation, the corresponding salinity, and the rhizosphere bacterial populations. In silico predictions linked the viruses to dominant prokaryotic taxa in the Aral Sea basin, such as Gammaproteobacteria, Actinomycetia, and Bacilli. The lysogenic lifestyle was predicted to be predominant in areas that dried out 5 years ago, representing the early revegetation phase. Metabolic prediction of viral auxiliary metabolic genes (AMGs) suggests that viruses may play a role in the biogeochemical cycles, stress resilience, and competitiveness of their hosts due to the presence of genes that are involved in biofilm formation. Overall, our study provides important insights into viral ecology in an extreme environment and expands our knowledge related to virus occurrence in terrestrial systems. IMPORTANCE Environmental viruses have added a wealth of knowledge to ecological studies with the emergence of metagenomic technology and approaches. They are also becoming recognized as important genetic repositories that underpin the functioning of terrestrial ecosystems but have remain moslty unexplored. Using shotgun metagenome sequencing and bioinformatic tools, we found that the viral community structure was affected during natural revegetation in the dried-up Aral Sea area, a model habitat for investigating natural ecological restoration but still understudied. In this study, we highlight the importance of viruses, elements that are overlooked, for their potential contribution to terrestrial ecosystems, i.e., nutrient cycles, stress resilience, and host competitiveness, during natural revegetation.


Asunto(s)
Microbiota , Virus , Humanos , Desecación , Bacterias/genética , Metagenoma , Microbiota/genética
9.
mSystems ; 7(6): e0073922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36377901

RESUMEN

The desiccation of the Aral Sea represents one of the largest human-made environmental regional disasters. The salt- and toxin-enriched dried-out basin provides a natural laboratory for studying ecosystem functioning and rhizosphere assembly under extreme anthropogenic conditions. Here, we investigated the prokaryotic rhizosphere communities of the native pioneer plant Suaeda acuminata (C.A.Mey.) Moq. in comparison to bulk soil across a gradient of desiccation (5, 10, and 40 years) by metagenome and amplicon sequencing combined with quantitative PCR (qPCR) analyses. The rhizosphere effect was evident due to significantly higher bacterial abundances but less diversity in the rhizosphere compared to bulk soil. Interestingly, in the highest salinity (5 years of desiccation), rhizosphere functions were mainly provided by archaeal communities. Along the desiccation gradient, we observed a significant change in the rhizosphere microbiota, which was reflected by (i) a decreasing archaeon-bacterium ratio, (ii) replacement of halophilic archaea by specific plant-associated bacteria, i.e., Alphaproteobacteria and Actinobacteria, and (iii) an adaptation of specific, potentially plant-beneficial biosynthetic pathways. In general, both bacteria and archaea were found to be involved in carbon cycling and fixation, as well as methane and nitrogen metabolism. Analysis of metagenome-assembled genomes (MAGs) showed specific signatures for production of osmoprotectants, assimilatory nitrate reduction, and transport system induction. Our results provide evidence that rhizosphere assembly by cofiltering specific taxa with distinct traits is a mechanism which allows plants to thrive under extreme conditions. Overall, our findings highlight a function-based rhizosphere assembly, the importance of plant-microbe interactions in salinated soils, and their exploitation potential for ecosystem restoration approaches. IMPORTANCE The desertification of the Aral Sea basin in Uzbekistan and Kazakhstan represents one of the most serious anthropogenic environmental disasters of the last century. Since the 1960s, the world's fourth-largest inland body of water has been constantly shrinking, which has resulted in an extreme increase of salinity accompanied by accumulation of many hazardous and carcinogenic substances, as well as heavy metals, in the dried-out basin. Here, we investigated bacterial and archaeal communities in the rhizosphere of pioneer plants by combining classic molecular methods with amplicon sequencing as well as metagenomics for functional insights. By implementing a desiccation gradient, we observed (i) remarkable differences in the archaeon-bacterium ratio of plant rhizosphere samples, (ii) replacement of archaeal indicator taxa during succession, and (iii) the presence of specific, potentially plant-beneficial biosynthetic pathways in archaea present during the early stages. In addition, our results provide hitherto-undescribed insights into the functional redundancy between plant-associated archaea and bacteria.


Asunto(s)
Microbiota , Rizosfera , Humanos , Desecación , Bacterias/genética , Archaea/genética , Microbiota/genética , Suelo , Plantas
10.
Microorganisms ; 10(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144404

RESUMEN

Bio-fertilizer practice considers not only economical but also environmentally friendly, sustainable agriculture. Endophytes can play important beneficiary roles in plant development, directly, indirectly, or synergistically. In this study, the majority of our endophytic actinobacteria were able to possess direct plant growth-promoting (PGP) traits, including auxin (88%), ammonia (96%), siderophore production (94%), and phosphate solubilization (24%), along with cell-wall degrading enzymes such as protease (75%), cellulase (81%), lipase (81%), and chitinase (18%). About 45% of tested strains have an inhibitory effect on the phytopathogen Fusarium oxysporum, followed by 26% for Verticillium dahlia. Overall, our results showed that strains XIEG63 and XIEG55 were the potent strains with various PGP traits that caused a higher significant increase (p ≤ 0.05) in length and biomass in the aerial part and roots of tomato and cotton, compared to the uninoculated plants. Our data showed that the greatest inhibition percentages of two phytopathogens were achieved due to treatment with strains XIEG05, XIEG07, XIEG45, and XIEG51. The GC-MS analysis showed that most of the compounds were mainly alkanes, fatty acid esters, phenols, alkenes, and aromatic chemicals and have been reported to have antifungal activity. Our investigation emphasizes that endophytic actinobacteria associated with medicinal plants might help reduce the use of chemical fertilization and potentially lead to increased agricultural productivity and sustainability.

11.
Curr Res Microb Sci ; 3: 100133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909614

RESUMEN

This study reports the diversity of cultivable endophytic bacteria associated with yellow iris (Iris pseudacorus L.) by using 16S rRNA gene analysis and their plant beneficial traits. The 16S rRNA sequence similarities of endophytic bacteria isolated from the leaves and roots of yellow iris showed that the isolates belonged to the genera Staphylococcus, Streptomyces, Variovorax, Pantoea, Paenibacillus, Bacillus, Janthinobacterium, Enterobacter, Brevibacterium, Agrobacterium, Rhizobium, Xanthomonas translucens, and Pseudomonas. The endophytic bacteria Pseudomonas gessardii HRT18, Brevibacterium frigoritolerans HRT8, Streptomyces atratus HRT13, and Bacillus toyonensis HST13 exhibited antimicrobial activity against five plant pathogenic fungi Fusarium, Rhizoctonia, Botrytis, Pythium, and Alternaria. They also demonstrated the capability to produce chitinase, protease, glucanase, lipase, HCN, and indole-3-acetic acid (IAA). Thirteen isolates (46%) produced IAA, and the most active IAA producers were Bacillus cereus, Agrobacterium tumefaciens, Agrobacterium vitis, Bacillus megaterium, and Bacillus aryabhattai. The IAA producing bacterial isolates stimulated root and shoot growth of garden cress. Our findings suggest that medicinal plants could be a promising source for isolating plant-beneficial bacteria that can be used to enhance the growth and protect plants against soil-borne pathogens.

12.
Plants (Basel) ; 11(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890492

RESUMEN

The excess use of chemicals by farmers in the agroecosystems degrades soil quality, disturbs soil ecology, and increases soil salinity and health hazards in humans. Stevia rebaudiana is an important medicinal and aromatic crop whose leaves contain steviol glycosides (SGs). The Bacillus safensis NAIMCC-B-02323 strain STJP from the rhizosphere of S. rebaudiana producing salicylic acid (16.80 µg/mL), chitinase (75.58 U/mL), ß-1,3-glucanase (220.36 U/mL), and cellulase (170 U/mL) was taken as a plant growth-promoting rhizobacteria (PGPR). The cell-free supernatant (CFS) from strain STJP showed significant biocontrol activity against Alternaria alternata (80%), suggesting the protective role of extracellular metabolite(s) against phytopathogens. Paneer whey-based bioformulation (P-WBF) was developed to exploit B. safensis STJP to enhance the growth, nutrient uptake, soil properties, stevioside content, and SGs biosynthesis in S. rebaudiana under an A. alternata-infested field. The combined treatment of P-WBF and mycorrhiza (Glomus fasciculatum ABTEC) significantly enhanced plant growth parameters after 90 days, in comparison with control. The symbiotic action (P-WBF and mycorrhiza) displayed much better results in terms of chlorophyll a and b (improved by 132.85% and 39.80%, respectively), protein (by 278.75%), flavonoid (by 86.99%), carbohydrate (by 103.84%), antioxidant (by 75.11%), and stevioside (by 120.62%) contents in plants as compared to the untreated set. Further, the augmentation of potassium (by 132.39%), phosphorous (by 94.22%), and zinc (by 111.11%) uptake in plant tissues and soil was also observed by the application of P-WBF and mycorrhiza. The expression of UGT74G1 and UGT85C2 genes related to SG biosynthesis was upregulated (2.7- and 3.2-fold, respectively) in plants treated with P-WBF and mycorrhiza as further confirmed by the accumulation of SGs. The results suggest that the application of P-WBF and mycorrhiza not only provides an ecofriendly and sustainable solution to improve stevioside content in S. rebaudiana by a nutrient-linked mechanism but also paves the way to enhanced production of stevioside.

13.
Plants (Basel) ; 11(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161404

RESUMEN

Numerous reports confirm the positive effect of biochar application on soil properties and plant development. However, the interaction between root-associated beneficial microbes and different types of biochar is not well understood. The objective of this study was to evaluate the plant growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants. Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type. In summary, these findings provide new insights into the understanding of the interactions between biochar and microbial inoculants, which may affect lettuce growth and development.

14.
Heliyon ; 7(11): e08240, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765771

RESUMEN

Cadmium stress disrupts plant-microbial interactions and reduces plant growth and development. In plants, the tolerance to stress can be increased by inoculation with endophytic microorganisms. The aim of this study was to investigate the distribution of endophytic fungi in various plant organs of barley and soybean and evaluate their Cd removal ability. Two hundred fifty-three fungal strains were isolated from various organs of barley (Hordeum vulgare cv Arna) and soybean (Glycine max cv Almaty). The colonization rate ranged from 13.6% to 57.3% and was significantly higher in the roots. Ten genera were identified: Fusarium, Penicillium, Aspergillus, Metarhizium, Beauveria, Trichoderma, Rhodotorula, Cryptococcus, Aureobasidium and Metschnikowia. Twenty-three fungal strains have a Cd tolerance index from 0.24 to 1.12. Five strains (Beauveria bassiana T7, Beauveria bassiana T15, Rhodotorula mucilaginosa MK1, Rhodotorula mucilaginosa RH2, Metschnikowia pulcherrima MP2) with the highest level of Cd tolerance have minimum inhibitory concentrations from 290 to 2400 µg/ml. These fungi were able to remove Cd up to 59%. The bioaccumulation capacity ranged from 2.3 to 11.9 mg/g. Selected fungal strains could be considered as biological agents for their potential application in the bioremediation of contaminated sites.

15.
AIMS Microbiol ; 7(3): 336-353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708176

RESUMEN

Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (Calendula officinalis L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas, and Beijerinckia. Among the bacterial strains, P. kilonensis FRT12, and P. rhizosphaerae FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, F. culmorum, F. solani and R. solani. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (C. officinalis L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.

16.
Plants (Basel) ; 10(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34685945

RESUMEN

Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.

17.
Biol Futur ; 72(2): 119-125, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34554469

RESUMEN

This paper aims to help policy makers with a characterization of the intrinsic value of biodiversity and its role as a critical foundation for sustainable development, human health, and well-being. Our objective is to highlight the urgent need to overcome economic, disciplinary, national, cultural, and regional barriers, in order to work out innovative measures to create a sustainable future and prevent the mutual extinction of humans and other species. We emphasize the pervasive neglect paid to the cross-dependency of planetary health, the health of individual human beings and other species. It is critical that social and natural sciences are taken into account as key contributors to forming policies related to biodiversity, conservation, and health management. We are reaching the target date of Nagoya treaty signatories to have accomplished measures to prevent biodiversity loss, providing a unique opportunity for policy makers to make necessary adjustments and refocus targets for the next decade. We propose recommendations for policy makers to explore novel avenues to halt the accelerated global loss of biodiversity. Beyond the critical ecological functions biodiversity performs, its enormous untapped the repertoire of natural molecular diversity is needed for solving accelerating global healthcare challenges.


Asunto(s)
Biodiversidad , Descubrimiento de Drogas/métodos , Política de Salud/tendencias , Desarrollo Sostenible/tendencias , Descubrimiento de Drogas/normas , Humanos
19.
Microorganisms ; 9(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34361884

RESUMEN

Endophytes associated with halophytes may contribute to the host's adaptation to adverse environmental conditions through improving their stress tolerance and protecting them from various soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria associated with halophytic samples growing on the shore of the western Aral Sea in Uzbekistan were investigated. The endophytic bacteria were isolated from the nine halophytic samples by using the culture-dependent method and identified according to their 16S rRNA gene sequences. The screening of endophytic bacterial isolates with the ability to inhibit pathogenic fungi was completed by the plate confrontation method. A total of 289 endophytic bacterial isolates were isolated from the nine halophytes, and they belong to Firmicutes, Actinobacteria, and Proteobacteria. The predominant genera of the isolated endophytic bacteria were Bacillus, Staphylococcus, and Streptomyces, accounting for 38.5%, 24.7%, and 12.5% of the total number of isolates, respectively. The comparative analysis indicated that the isolation effect was better for the sample S8, with the highest diversity and richness indices. The diversity index of the sample S7 was the lowest, while the richness index of samples S5 and S6 was the lowest. By comparing the isolation effect of 12 different media, it was found that the M7 medium had the best performance for isolating endophytic bacteria associated with halophytes in the western Aral Sea Basin. In addition, the results showed that only a few isolates have the ability to produce ex-enzymes, and eight and four endophytic bacterial isolates exhibited significant inhibition to the growth of Valsa mali and Verticillium dahlia, respectively. The results of this study indicated that halophytes are an important source for the selection of microbes that may protect plant from soil-borne pathogens.

20.
Sci Total Environ ; 793: 148494, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328954

RESUMEN

The ongoing COVID-19 pandemic has not only globally caused a high number of causalities, but is also an unprecedented challenge for scientists. False-positive virus detection tests not only aggravate the situation in the healthcare sector, but also provide ground for speculations. Previous studies have highlighted the importance of software choice and data interpretation in virome studies. We aimed to further expand theoretical and practical knowledge in bioinformatics-driven virome studies by focusing on short, virus-like DNA sequences in metagenomic data. Analyses of datasets obtained from different sample types (terrestrial, animal and human related samples) and origins showed that coronavirus-like sequences have existed in host-associated and environmental samples before the current COVID-19 pandemic. In the analyzed datasets, various Betacoronavirus-like sequences were detected that also included SARS-CoV-2 matches. Deepening analyses indicated that the detected sequences are not of viral origin and thus should not be considered in virome profiling approaches. Our study confirms the importance of parameter selection, especially in terms of read length, for reliable virome profiling. Natural environments are an important source of coronavirus-like nucleotide sequences that should be taken into account when virome datasets are analyzed and interpreted. We therefore suggest that processing parameters are carefully selected for SARS-CoV-2 profiling in host related as well as environmental samples in order to avoid incorrect identifications.


Asunto(s)
COVID-19 , Pandemias , Animales , Humanos , Metagenoma , Metagenómica , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA