Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2306700120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109540

RESUMEN

Monoclonal antibodies (mAbs) have successfully been developed for the treatment of a wide range of diseases. The clinical success of mAbs does not solely rely on optimal potency and safety but also require good biophysical properties to ensure a high developability potential. In particular, nonspecific interactions are a key developability parameter to monitor during discovery and development. Despite an increased focus on the detection of nonspecific interactions, their underlying physicochemical origins remain poorly understood. Here, we employ solution-based microfluidic technologies to characterize a set of clinical-stage mAbs and their interactions with commonly used nonspecificity ligands to generate nonspecificity fingerprints, providing quantitative data on the underlying physical chemistry. Furthermore, the solution-based analysis enables us to measure binding affinities directly, and we evaluate the contribution of avidity in nonspecific binding by mAbs. We find that avidity can increase the apparent affinity by two orders of magnitude. Notably, we find that a subset of these highly developed mAbs show nonspecific electrostatic interactions, even at physiological pH and ionic strength, and that they can form microscale particles with charge-complementary polymers. The group of mAb constructs flagged here for nonspecificity are among the worst performers in independent reports of surface and column-based screens. The solution measurements improve on the state-of-the-art by providing a stand-alone result for individual mAbs without the need to benchmark against cohort data. Based on our findings, we propose a quantitative solution-based nonspecificity score, which can be integrated in the development workflow for biological therapeutics and more widely in protein engineering.


Asunto(s)
Anticuerpos Monoclonales , Ingeniería de Proteínas , Humanos
2.
Proc Natl Acad Sci U S A ; 120(15): e2210332120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011217

RESUMEN

Nonspecific interactions are a key challenge in the successful development of therapeutic antibodies. The tendency for nonspecific binding of antibodies is often difficult to reduce by rational design, and instead, it is necessary to rely on comprehensive screening campaigns. To address this issue, we performed a systematic analysis of the impact of surface patch properties on antibody nonspecificity using a designer antibody library as a model system and single-stranded DNA as a nonspecificity ligand. Using an in-solution microfluidic approach, we find that the antibodies tested bind to single-stranded DNA with affinities as high as KD = 1 µM. We show that DNA binding is driven primarily by a hydrophobic patch in the complementarity-determining regions. By quantifying the surface patches across the library, the nonspecific binding affinity is shown to correlate with a trade-off between the hydrophobic and total charged patch areas. Moreover, we show that a change in formulation conditions at low ionic strengths leads to DNA-induced antibody phase separation as a manifestation of nonspecific binding at low micromolar antibody concentrations. We highlight that phase separation is driven by a cooperative electrostatic network assembly mechanism of antibodies with DNA, which correlates with a balance between positive and negative charged patches. Importantly, our study demonstrates that both nonspecific binding and phase separation are controlled by the size of the surface patches. Taken together, these findings highlight the importance of surface patches and their role in conferring antibody nonspecificity and its macroscopic manifestation in phase separation.


Asunto(s)
Anticuerpos Monoclonales , ADN de Cadena Simple , Anticuerpos Monoclonales/química , Interacciones Hidrofóbicas e Hidrofílicas
3.
Diabetologia ; 66(2): 376-389, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36404376

RESUMEN

AIMS/HYPOTHESIS: Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individuals with diabetes from obtaining the recommended reduction in HbA1c. Inhibition of glucagon receptor signalling and liver-preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes (i.e. improved glycaemic control), but also have effects that are potential safety risks (i.e. alpha cell hyperplasia in response to glucagon receptor antagonists and increased levels of liver triacylglycerols and plasma alanine aminotransferase activity in response to glucagon receptor antagonists and liver-preferential insulin). We hypothesised that a combination of glucagon inhibition and liver-preferential insulin action in a dual-acting molecule would widen the therapeutic window. By correcting two pathogenic mechanisms (dysregulated glucagon signalling and non-physiological distribution of conventional insulin administered s.c.), we hypothesised that lower doses of each component would be required to obtain sufficient reduction of hyperglycaemia, and that the undesirable effects that have previously been observed for monotreatment with glucagon antagonists and liver-preferential insulin could be avoided. METHODS: A dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule was designed and tested in rodent models (normal rats, rats with streptozotocin-induced hyperglycaemia, db/db mice and mice with diet-induced obesity and streptozotocin-induced hyperglycaemia), allowing detailed characterisation of the pharmacokinetic and pharmacodynamic properties of the dual-acting molecule and relevant control compounds, as well as exploration of how the dual-acting molecule influenced glucagon-induced recovery and spontaneous recovery from acute hypoglycaemia. RESULTS: This molecule normalised blood glucose in diabetic models, and was markedly less prone to induce hypoglycaemia than conventional insulin treatment (approximately 4.6-fold less potent under hypoglycaemic conditions than under normoglycaemic conditions). However, compared to treatment with conventional long-acting insulin, this dual-acting molecule also increased triacylglycerol levels in the liver (approximately 60%), plasma alanine aminotransferase levels (approximately twofold) and alpha cell mass (approximately twofold). CONCLUSIONS/INTERPRETATION: While the dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule showed markedly improved regulation of blood glucose, effects that are potential safety concerns persisted in the pharmacologically relevant dose range.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Hipoglucemia , Ratas , Animales , Ratones , Insulina/uso terapéutico , Glucagón , Glucemia , Receptores de Glucagón , Alanina Transaminasa , Estreptozocina , Hipoglucemia/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Modelos Animales de Enfermedad , Hígado , Diabetes Mellitus/tratamiento farmacológico
4.
Mol Pharm ; 18(10): 3843-3853, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34519511

RESUMEN

In addition to activity, successful biological drugs must exhibit a series of suitable developability properties, which depend on both protein sequence and buffer composition. In the context of this high-dimensional optimization problem, advanced algorithms from the domain of machine learning are highly beneficial in complementing analytical screening and rational design. Here, we propose a Bayesian optimization algorithm to accelerate the design of biopharmaceutical formulations. We demonstrate the power of this approach by identifying the formulation that optimizes the thermal stability of three tandem single-chain Fv variants within 25 experiments, a number which is less than one-third of the experiments that would be required by a classical DoE method and several orders of magnitude smaller compared to detailed experimental analysis of full combinatorial space. We further show the advantage of this method over conventional approaches to efficiently transfer historical information as prior knowledge for the development of new biologics or when new buffer agents are available. Moreover, we highlight the benefit of our technique in engineering multiple biophysical properties by simultaneously optimizing both thermal and interface stabilities. This optimization minimizes the amount of surfactant in the formulation, which is important to decrease the risks associated with corresponding degradation processes. Overall, this method can provide high speed of converging to optimal conditions, the ability to transfer prior knowledge, and the identification of new nonlinear combinations of excipients. We envision that these features can lead to a considerable acceleration in formulation design and to parallelization of operations during drug development.


Asunto(s)
Productos Biológicos/administración & dosificación , Composición de Medicamentos/métodos , Aprendizaje Automático , Teorema de Bayes , Productos Biológicos/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Humanos , Sistema de Administración de Fármacos con Nanopartículas/administración & dosificación
5.
Blood ; 138(14): 1258-1268, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34077951

RESUMEN

Hemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation, with potencies 13 and 18 times higher than a sequence-identical analogue of emicizumab. A similar potency difference was observed in a tail vein transection model in hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Hemofilia A/tratamiento farmacológico , Hemorragia/tratamiento farmacológico , Animales , Factor IXa/antagonistas & inhibidores , Factor VIIIa/uso terapéutico , Factor X/antagonistas & inhibidores , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL
6.
Brain Struct Funct ; 226(1): 225-245, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33341919

RESUMEN

Glucagon-like peptide-1 (GLP-1) inhibits food intake and regulates glucose homeostasis. These actions are at least partly mediated by central GLP-1 receptor (GLP-1R). Little information is available, however, about the subcellular localization and the distribution of the GLP-1R protein in the rat brain. To determine the localization of GLP-1R protein in the rat brain, immunocytochemistry was performed at light and electron microscopic levels. The highest density of GLP-1R-immunoreactivity was observed in the circumventricular organs and regions in the vicinity of these areas like in the arcuate nucleus (ARC) and in the nucleus tractus solitarii (NTS). In addition, GLP-1R-immunreactive (IR) neuronal profiles were also observed in a number of telencephalic, diencephalic and brainstem areas and also in the cerebellum. Ultrastructural examination of GLP-1R-immunoreactivity in energy homeostasis related regions showed that GLP-1R immunoreactivity is associated with the membrane of perikarya and dendrites but GLP-1R can also be observed inside and on the surface of axon varicosities and axon terminals. In conclusion, in this study we provide a detailed map of the GLP-1R-IR structures in the CNS. Furthermore, we demonstrate that in addition to the perikaryonal and dendritic distribution, GLP-1R is also present in axonal profiles suggesting a presynaptic action of GLP-1. The very high concentration of GLP-1R-profiles in the circumventricular organs and in the ARC and NTS suggests that peripheral GLP-1 may influence brain functions via these brain areas.


Asunto(s)
Encéfalo/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/ultraestructura , Inmunohistoquímica , Masculino , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
7.
J Immunol ; 206(1): 109-117, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208457

RESUMEN

Globally, the COVID-19 pandemic has had extreme consequences for the healthcare system and has led to calls for diagnostic tools to monitor and understand the transmission, pathogenesis, and epidemiology, as well as to evaluate future vaccination strategies. In this study, we have developed novel, to our knowledge, flexible ELISA-based assays for specific detection of human SARS-CoV-2 Abs against the receptor-binding domain, including an Ag sandwich ELISA relevant for large population screening and three isotype-specific assays for in-depth diagnostics. Their performance was evaluated in a cohort of 350 convalescent participants with previous COVID-19 infection, ranging from asymptomatic to critical cases. We mapped the Ab responses to different areas on protein N and S and showed that the IgM, A, and G Ab responses against receptor-binding domain are significantly correlated to the disease severity. These assays and the data generated from them are highly relevant for diagnostics and prognostics and contribute to the understanding of long-term COVID-19 immunity.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , Convalecencia , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Adulto Joven
8.
Mol Cell ; 80(3): 485-500.e7, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027691

RESUMEN

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Animales , Sitios de Unión/fisiología , Microscopía por Crioelectrón/métodos , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Humanos , Péptidos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
9.
J Thromb Haemost ; 18(1): 104-113, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31549480

RESUMEN

BACKGROUND: Recombinant factor VIIa (rFVIIa) enhances thrombin generation in a platelet-dependent manner; however, rFVIIa binds activated platelets with relatively low affinity. Triggering receptor expressed on myeloid cells (TREM)-like transcript (TLT)-1 is expressed exclusively on activated platelets. OBJECTIVE: To enhance the potency of rFVIIa via binding TLT-1. METHODS: Recombinant FVIIa was conjugated to a TLT-1 binding Fab. In vitro potency of this platelet-targeted rFVIIa (PT-rFVIIa) was evaluated using factor X activation assays and by measuring viscoelastic changes in whole blood. In vivo potency was evaluated using a tail vein transection model in F8-/- mice expressing human TLT-1. RESULTS: PT-rFVIIa and rFVIIa had similar dissociation constant values for tissue factor binding and similar tissue factor-dependent factor X activation. However, PT-rFVIIa had increased catalytic efficiency on TLT-1-loaded vesicles and activated platelets. The in vitro potency in normal human blood with antibody-induced hemophilia A was dependent on assay conditions used; with maximally activated platelets, the half maximal effective concentration for clot time for PT-rFVIIa was 49-fold lower compared with rFVIIa. In the murine bleeding model, a 53-fold lower half maximal effective concentration was observed for blood loss for PT-rFVIIa, supporting the relevance of the assay conditions with maximally activated platelets. In vitro analysis of blood from subjects with hemophilia A confirmed the data obtained with normal blood. CONCLUSIONS: Increasing the affinity of rFVIIa to activated platelets resulted in approximately 50-fold increased potency both in vitro and in the mouse model. The correlation of in vivo with in vitro data using maximally activated platelets supports that these assay conditions are relevant when evaluating platelet-targeted hemostatic concepts.


Asunto(s)
Plaquetas , Hemofilia A , Animales , Factor VIIa , Hemofilia A/tratamiento farmacológico , Ratones , Proteínas Recombinantes , Trombina
10.
Blood ; 119(24): 5871-8, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22563084

RESUMEN

Hemophilia is treated by IV replacement therapy with Factor VIII (FVIII) or Factor IX (FIX), either on demand to resolve bleeding, or as prophylaxis. Improved treatment may be provided by drugs designed for subcutaneous and less frequent administration with a reduced risk of inhibitor formation. Tissue factor pathway inhibitor (TFPI) down-regulates the initiation of coagulation by inhibition of Factor VIIa (FVIIa)/tissue factor/Factor Xa (FVIIa/TF/FXa). Blockage of TFPI inhibition may facilitate thrombin generation in a hemophilic setting. A high-affinity (K(D) = 25pM) mAb, mAb 2021, against TFPI was investigated. Binding of mAb 2021 to TFPI effectively prevented inhibition of FVIIa/TF/FXa and improved clot formation in hemophilia blood and plasma. The binding epitope on the Kunitz-type protease inhibitor domain 2 of TFPI was mapped by crystallography, and showed an extensive overlap with the FXa contact region highlighting a structural basis for its mechanism of action. In a rabbit hemophilia model, an intravenous or subcutaneous dose significantly reduced cuticle bleeding. mAb 2021 showed an effect comparable with that of rFVIIa. Cuticle bleeding in the model was reduced for at least 7 days by a single intravenous dose of mAb 2021. This study suggests that neutralization of TFPI by mAb 2021 may constitute a novel treatment option in hemophilia.


Asunto(s)
Anticuerpos Bloqueadores/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Factor Xa/metabolismo , Hemofilia A/tratamiento farmacológico , Hemostasis/efectos de los fármacos , Lipoproteínas/metabolismo , Modelos Moleculares , Animales , Anticuerpos Bloqueadores/administración & dosificación , Anticuerpos Bloqueadores/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Neutralizantes/farmacología , Tiempo de Sangría , Coagulación Sanguínea/efectos de los fármacos , Reacciones Cruzadas/efectos de los fármacos , Modelos Animales de Enfermedad , Epítopos/inmunología , Factor VIII/farmacología , Factor Xa/inmunología , Femenino , Fibrina/metabolismo , Células HEK293 , Hemofilia A/sangre , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pruebas de Neutralización , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Conejos , Especificidad de la Especie , Tromboplastina/farmacología
11.
Immunity ; 34(4): 579-89, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21439856

RESUMEN

It is well established that natural killer (NK) cells confer resistance to many viral diseases, but in only a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1(b) are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus.


Asunto(s)
Ectromelia Infecciosa/inmunología , Células Asesinas Naturales/inmunología , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Animales , Línea Celular , Movimiento Celular , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones
12.
PLoS One ; 5(12): e15184, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21151939

RESUMEN

The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.


Asunto(s)
Citomegalovirus/genética , Regulación de la Expresión Génica , Células Asesinas Naturales/citología , Subfamília D de Receptores Similares a Lectina de las Células NK/metabolismo , Animales , Técnicas de Cultivo de Célula , Dimerización , Humanos , Inmunidad Celular , Células Asesinas Naturales/metabolismo , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Linfocitos T/metabolismo , Vaccinia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...