Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1404538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873563

RESUMEN

Protein is an essential macronutrient in our diet, source of nitrogen and essential amino acids, but the biological utilization of dietary protein depends on its digestibility and the absorption of amino acids and peptides in the gastrointestinal tract. The methods to define the amount and the quality of protein to meet human nutritional needs, such as the Digestible Indispensable Amino Acid Score (DIAAS), require the use of animal models or human studies. These in vivo methods are the reference in protein quality evaluation, but they are expensive and long-lasting procedures with significant ethical restrictions. Therefore, the development of rapid, reproducible and in vitro digestion methods validated with in vivo data is an old demand. This review describes the challenges of the in vitro digestion methods in the evaluation of the protein nutritional quality. In addition to the technical difficulties to simulate the complex and adaptable processes of digestion and absorption, these methods are affected by similar limitations as the in vivo procedures, i.e., analytical techniques to accurately determine bioavailable amino acids and the contribution of the endogenous nitrogen. The in vitro methods used for the evaluation of protein digestibility, with special attention on those showing comparative data, are revised, emphasizing their pros and cons. The internationally harmonized digestion protocol proposed by the INFOGEST network is being adapted to evaluate protein and amino acid digestibility. The inter-laboratory reproducibility of this protocol was demonstrated for dairy products. The in vivo/in vitro comparability results obtained to date with this protocol for several plant and animal sources are promising, but it requires an extensive validation with a wider range of foods and substrates with known in vivo digestibility. These in vitro methods will probably not be applicable to all foods, and therefore, it is important to identify their limitations, not to elude their use, but to apply them within the limits, by using the appropriate standards and references, and always as a complementary tool to in vivo tests to reduce their number.

2.
J Dairy Sci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851572

RESUMEN

Mare milk has a unique protein composition that makes it a preferred option for adult and infant nutrition. Several functional properties have been attributed to this milk but with little evidence yet. In fact, knowledge on mare milk composition is still limited. In particular, studies addressing the performance of mare milk proteins during human gastrointestinal digestion are scarce, which limits the understanding of mare milk nutritional quality and functionality. For this reason, the present study describes the digestibility of mare milk proteins and the release of peptides as affected by management and lactation stage, factors known to affect milk composition. Mare milk samples from 3 different farms, and collected during 6 mo of lactation (n = 54), were subjected to a static in vitro gastrointestinal model to measure peptide release and protein digestibility. In the present study, a detailed description of protein and individual amino acid behavior during the digestion process was given. For the first time, digestion of the 2 equine ß-lactoglobulin isoforms (I and II) was described individually. In addition, it was found that lactation stage and management system can significantly affect protein digestibility and peptide release during gastrointestinal digestion of mare milk. Presumably, differences in the composition of mare milk influence the protein structure and enzyme accessibility, which might have an impact on digestion behavior. Despite no specific bioactive peptides were identified, several precursors of previously described bioactive peptides were found. These findings could support the idea of mare milk as a food with added value.

3.
Food Res Int ; 178: 113947, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309908

RESUMEN

To support the transition towards more sustainable and healthy diets, viable alternatives to foods of animal origin need to be identified. Many plant-based protein sources are currently marketed with claims of minimal environmental impact, but very limited consideration has been given to their protein quality and bioavailable mineral content considering the fact that animal-based foods are typically the primary source of both in Western diets. In this study, traditionally consumed soy foods (cooked soybeans, soymilk, tofu) from different Swiss soybean cultivars were nutritionally characterized and the in vitro digestibility of individual amino acids and total protein were assessed using an in vitro model based on the static INFOGEST protocol; the protein quality was evaluated using the in vitro digestible indispensable amino acid score (DIAAS). The results reveal an increase in total protein in vitro digestibility across the traditional soy food production value chain: 52.1-62.7% for cooked soybeans, 84.1-90.6% for soymilk, and 94.9-98.4% for tofu. Protein quality, determined using the recommended amino acid pattern for 0.5-3 years old, was "low" (no claim) for cooked soybeans (DIAAS < 60), while soymilk (DIAAS = 78-88) and tofu products (DIAAS = 79-91) were of similar "good" protein quality, with considerably higher DIAAS values than those of cooked soybeans (P < 0.001). The iron and zinc contents in soy foods were substantial, but high molar ratios of phytic acid (PA) to iron (PA/Fe; >8) and PA to zinc (PA/Zn; >15) indicate a possible strong inhibition of iron and zinc bioavailability. Based on the DIAAS results, soymilk and tofu would be suitable plant-based alternatives to animal-based foods, while future efforts should focus on optimizing soybean preparation to overcome the negative effects of the plant tissue matrix as well as processing steps to reduce mineral absorption inhibiting substances.


Asunto(s)
Glycine max , Alimentos de Soja , Animales , Aminoácidos/metabolismo , Suiza , Proteínas de Plantas/metabolismo , Hierro , Minerales , Zinc
4.
Front Microbiol ; 14: 1183018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583512

RESUMEN

Healthy, untreated cows of nine dairy herds from the Swiss Canton Tessin were analyzed three times within one year to identify the most abundant species of the intramammary bacteriome. Aseptically collected milk samples were cultured and bacteria identified using MALDI-TOF. Of 256 cows analyzed, 96% were bacteriologically positive and 80% of the 1,024 quarters were positive for at least one bacterial species. 84.5% of the quarters were healthy with somatic cell counts (SCC) < 200,000 cells/mL, whereas 15.5% of the quarters showed a subclinical mastitis (SCC ≥ 200,000 cells/mL). We could assign 1,288 isolates to 104 different bacterial species including 23 predominant species. Non-aureus staphylococci and mammaliicocci (NASM) were most prevalent (14 different species; 73.5% quarters). Staphylococcus xylosus and Mammaliicoccus sciuri accounted for 74.7% of all NASM isolates. To describe the intramammary resistome, 350 isolates of the predominant species were selected and subjected to short-read whole genome sequencing (WGS) and phenotypic antibiotic resistance profiling. While complete genomes of eight type strains were available, the remaining 15 were de novo assembled with long reads as a resource for the community. The 23 complete genomes served for reference-based assembly of the Illumina WGS data. Both chromosomes and mobile genetic elements were examined for antibiotic resistance genes (ARGs) using in-house and online software tools. ARGs were then correlated with phenotypic antibiotic resistance data from minimum inhibitory concentration (MIC). Phenotypic and genomic antimicrobial resistance was isolate-specific. Resistance to clindamycin and oxacillin was most frequently observed (65 and 30%) in Staphylococcus xylosus but could not be linked to chromosomal or plasmid-borne ARGs. However, in several cases, the observed antimicrobial resistance could be explained by the presence of mobile genetic elements like tetK carried on small plasmids. This represents a possible mechanism of transfer between non-pathogenic bacteria and pathogens of the mammary gland within and between herds. The-to our knowledge-most extensive bacteriome reported and the first attempt to link it with the resistome promise to profoundly affect veterinary bacteriology in the future and are highly relevant in a One Health context, in particular for mastitis, the treatment of which still heavily relies on antibiotics.

5.
Front Nutr ; 10: 1150581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465141

RESUMEN

Edible insects, such as mealworms (Tenebrio molitor larvae; TM) and crickets (Acheta domesticus; AD), are a sustainable, protein-dense novel food with a favorable amino acid profile, which might be an alternative to animal proteins. To assess the protein quality of TM and AD, we assessed the digestible indispensable amino acid scores (DIAAS), considering individual amino acids and their ileal amino acid digestibility, using an in vitro model based on the INFOGEST digestion protocol. In addition, we evaluated if various processing and food preparation steps influenced the in vitro digestibility of individual amino acids and the in vitro DIAAS values of TM and AD and compared them to chicken breast as a reference of excellent protein quality. The total protein in vitro digestibility ranged from 91 to 99% for TM and from 79 to 93% for AD and was negatively affected by oven-drying and, to a lesser extent, by chitin-reduction. The in vitro DIAAS values were 113, 89, and 92 for chicken, blanched TM, and blanched AD, respectively, when considering the indispensable amino acid (IAA) requirements of young children between 6 months and 3 years. Across different processing and food preparation methods, the in vitro DIAAS values ranged between 59 and 89 for TM and between 40 and 92 for AD, with the lowest values found in chitin-reduced insects. Due to their similarities to chicken regarding protein composition, total protein in vitro digestibility, and in vitro DIAAS values, TM and AD might be an alternative to traditional animal proteins, provided that suitable processing and food preparation methods are applied. Our in vitro DIAAS results suggest that TM and AD can thus be considered good-quality protein sources for children older than 6 months. The DIAAS calculations are currently based on crude protein (total nitrogen × 6.25), resulting in an overestimation of insect protein content, and leading to an underestimation and potential misclassification of protein quality. The in vitro model applied in this study is a valuable tool for product development to optimize the protein quality of edible insects. Further studies are required to assess the in vivo DIAAS of insects in humans.

6.
Food Res Int ; 169: 112887, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254335

RESUMEN

Mass spectrometry has become the technique of choice for the assessment of a high variety of molecules in complex food matrices. It is best suited for monitoring the evolution of digestive processes in vivo and in vitro. However, considering the variety of equipment available in different laboratories and the diversity of sample preparation methods, instrumental settings for data acquisition, statistical evaluations, and interpretations of results, it is difficult to predict a priori the ideal parameters for optimal results. The present work addressed this uncertainty by executing an inter-laboratory study with samples collected during in vitro digestion and presenting an overview of the state-of-the-art mass spectrometry applications and analytical capabilities available for studying food digestion. Three representative high-protein foods - skim milk powder (SMP), cooked chicken breast and tofu - were digested according to the static INFOGEST protocol with sample collection at five different time points during gastric and intestinal digestion. Ten laboratories analysed all digesta with their in-house equipment and applying theirconventional workflow. The compiled results demonstrate in general, that soy proteins had a slower gastric digestion and the presence of longer peptide sequences in the intestinal phase compared to SMP or chicken proteins, suggesting a higher resistance to the digestion of soy proteins. Differences in results among the various laboratories were attributed more to the peptide selection criteria than to the individual analytical platforms. Overall, the combination of mass spectrometry techniques with suitable methodological and statistical approaches is adequate for contributing to the characterisation of the recently defined digestome.


Asunto(s)
Digestión , Proteínas de Soja , Animales , Proteínas de Soja/metabolismo , Leche/química , Péptidos/análisis , Espectrometría de Masas
7.
Food Res Int ; 166: 112569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914338

RESUMEN

Plant-based meat alternatives of high quality and digestibility could be a way to reduce meat consumption and, consequently, the environmental impact. However, little is known about their nutritional characteristics and digestion behaviour. Therefore, in the present study, the protein quality of beef burgers, known as excellent source of protein, was compared with the protein quality of two highly transformed veggie burgers, based on soy or pea-faba proteins, respectively. The different burgers were digested according to the INFOGEST in vitro digestion protocol. After digestion, total protein digestibility was determined, either based on total nitrogen (Kjeldahl) analysis, or after acid hydrolysis based on total amino groups (o-phthalaldehyde method) or total amino acids (TAA; by HPLC). The digestibility of individual amino acids was also determined, and the digestible indispensable amino acid score (DIAAS) was calculated based on in vitro digestibility. The impact of texturising and grilling on in vitro protein digestibility and the digestible indispensable amino acid ratio (DIAAR) was evaluated at the level of the ingredients and the finished products. As expected, the grilled beef burger had the highest in vitro DIAAS values (Leu 124 %), and grilled soy protein-based burger reached in vitro DIAAS values that could be rated as good (soy burger, SAA 94 %) protein source, according to the Food and Agriculture Organization. The texturing process did not significantly affect the total protein digestibility of the ingredients. However, grilling led to a decrease in digestibility and DIAAR of the pea-faba burger (P < 0.05), which was not observed in the soy burger, but led to an increase in DIAAR in the beef burger (P < 0.005).


Asunto(s)
Aminoácidos , Veganos , Animales , Bovinos , Humanos , Aminoácidos/análisis , Íleon/metabolismo , Digestión , Carne/análisis , Proteínas de Soja/metabolismo
8.
Food Chem ; 404(Pt B): 134720, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332577

RESUMEN

The FAO recommends the digestible indispensable amino acid score (DIAAS) to determine protein quality in foods, preferably tested in vivo. Here, the INFOGESTin vitrodigestion protocol was applied and supplemented with an analytical workflow allowing the assessment of protein digestibility and DIAAS calculation. The protocol was applied to selected samples WPI, zein, collagen, black beans, pigeon peas, All-Bran®, and peanuts. The total protein digestibility, digestibility of individual amino acids (AA), and DIAAS values were established and compared with in vivo data for the same substrates. Total protein digestibility (total Nitrogen, r = 0.7, P < 0.05; primary amines (OPA), r = 0.6, P < 0.02; total AA, r = 0.6, P < 0.02) and digestibility of individual AA (r = 0.6, P < 0.0001) were in good agreement, between in vitro and in vivo, with a mean difference of 1.2 %. In vitro DIAAS was highly correlated with DIAAS obtained from in vivo true ileal digestibility values (r = 0.96, R2 = 0.89, P < 0.0001) with a mean difference of 0.1 %.


Asunto(s)
Aminoácidos Esenciales , Digestión , Flujo de Trabajo , Aminoácidos Esenciales/metabolismo , Proteínas en la Dieta/metabolismo , Aminoácidos/metabolismo , Íleon/metabolismo , Dieta
9.
Front Nutr ; 9: 988707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386959

RESUMEN

The high decline in liquid milk consumption in Western countries has been compensated by the increased consumption of processed dairy products and the rapidly increasing number of new plant-based beverages constantly introduced in the market, advertised as milk substitutes and placed on shelves near milk products. To provide better understanding about the nutritional value of these drinks compared with cow's milk, 27 plant-based drinks of 8 different species and two milk samples were purchased from two big retailers in Switzerland, and their composition regarding protein, carbohydrate, fat, vitamin, and mineral contents and residue load [glyphosate, aminomethylphosphonic acid (AMPA), and arsenic] was analyzed quantitatively and qualitatively. Energy and nutrient intakes were calculated and compared with the dietary reference values for Germany, Austria and Switzerland (D-A-CH). In addition, the digestible indispensable amino acid score (DIAAS) was calculated to estimate the quality of the proteins. Milk contained more energy; fat; carbohydrate; vitamins C, B2, B12, and A; biotin; pantothenic acid; calcium; phosphorus; and iodine than most plant-based drinks. Soy drinks provided slightly more protein and markedly more vitamins B1 and B6, folic acid, and vitamins E and D2 (with supplemented vitamin D2) and K1, magnesium, manganese, iron, and copper than milk and the other plant-based drinks. However, with the exception of cow's milk and soy drinks, which had > 3% protein, most milk alternatives contained ≤ 1% protein; therefore, they cannot be considered good protein sources. In regard to protein quality, milk was outstanding compared with all plant-based drinks and exhibited higher calculated DIAASs. Our results show that the analyzed plant-based drinks are not real alternatives to milk in terms of nutrient composition, even if the actual fortification is taken into account. Improved fortification is still an issue and can be optimized using the most bioavailable and soluble derivatives. Complete replacement of milk with plant-based drinks without adjusting the overall diet can lead to deficiencies of certain important nutrients in the long term.

10.
J Dairy Sci ; 105(11): 8705-8717, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175240

RESUMEN

Somatic cell count (SCC) in milk is an essential indicator for defining and managing udder health. However, analyzing differential SCC (dSCC) can be helpful in determining the type or evolution stage of mastitis. A high abundance of polymorphonuclear cells (PMN) is associated with acute mastitis; however, the status of a chronic disease is less well characterized. A method capable of analyzing SCC and dSCC can prove to be a helpful tool for monitoring the status of evolution of mastitis disease in a better way. Therefore, a new direct-flow cytometry method was developed to count and differentiate somatic cells in milk without the steps of centrifugation or washing, avoiding variabilities that occur due to enrichment or loss of specific cell types. In this new method, SCC is analyzed using the method of DNA staining with Hoechst stain, whereas dSCC are analyzed using specific antibodies targeting 2 main cell types associated with mastitis: PMN cells and antigen-presenting cells, which are associated with innate and adaptive immunity. Equivalent SCC values were obtained between the new method and the routine ISO 13366-2 method in a comparison of 240 raw milk samples. Furthermore, dSCC results were confirmed by microscopy after May-Gründwald-Giemsa staining in 165 quarter milk samples from healthy and diseased cows. The method was verified with fluorescence microscopy on the 2 targeted cell types and in raw milk samples. The newly developed method is independent of any instrument and can be further designed to differentiate other cell types and animal species by selecting appropriate antibodies.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Femenino , Bovinos , Animales , Leche , Citometría de Flujo/veterinaria , Recuento de Células/veterinaria , Recuento de Células/métodos , Glándulas Mamarias Animales , Centrifugación/veterinaria
11.
EFSA J ; 19(4): e06576, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33968255

RESUMEN

Pasteurisation of raw milk, colostrum, dairy or colostrum-based products must be achieved using at least 72°C for 15 s, at least 63°C for 30 min or any equivalent combination, such that the alkaline phosphatase (ALP) test immediately after such treatment gives a negative result. For cows' milk, a negative result is when the measured activity is ≤ 350 milliunits of enzyme activity per litre (mU/L) using the ISO standard 11816-1. The use and limitations of an ALP test and possible alternative methods for verifying pasteurisation of those products from other animal species (in particular sheep and goats) were evaluated. The current limitations of ALP testing of bovine products also apply. ALP activity in raw ovine milk appears to be about three times higher and in caprine milk about five times lower than in bovine milk and is highly variable between breeds. It is influenced by season, lactation stage and fat content. Assuming a similar pathogen inactivation rate to cows' milk and based on the available data, there is 95-99% probability (extremely likely) that pasteurised goat milk and pasteurised sheep milk would have an ALP activity below a limit of 300 and 500 mU/L, respectively. The main alternative methods currently used are temperature monitoring using data loggers (which cannot detect other process failures such as cracked or leaking plates) and the enumeration of Enterobacteriaceae (which is not suitable for pasteurisation verification but is relevant for hygiene monitoring). The inactivation of certain enzymes other than ALP may be more suitable for the verification of pasteurisation but requires further study. Secondary products of heat treatment are not suitable as pasteurisation markers due to the high temperatures needed for their production. More research is needed to facilitate a definitive conclusion on the applicability of changes in native whey proteins as pasteurisation markers.

12.
Food Chem ; 340: 128154, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010641

RESUMEN

Numerous bacteria are responsible for hydrolysis of proteins during cheese ripening. The raw milk flora is a major source of bacterial variety, starter cultures are needed for successful acidification of the cheese and proteolytic strains like Lactobacillus helveticus, are added for flavor improvement or acceleration of ripening processes. To study the impact of higher bacterial diversity in cheese on protein hydrolysis during simulated human digestion, Raclette-type cheeses were produced from raw or heat treated milk, with or without proteolytic L. helveticus and ripened for 120 days. Kinetic processes were studied with a dynamic (DIDGI®) in vitro protocol and endpoints with the static INFOGEST in vitro digestion protocol, allowing a comparison of the two in vitro protocols at the level of gastric and intestinal endpoints. Both digestion protocols resulted in comparable peptide patterns after intestinal digestion and higher microbial diversity in cheeses led to a more diverse peptidome after simulated digestion.


Asunto(s)
Queso/microbiología , Proteínas de la Leche/metabolismo , Leche/microbiología , Aminoácidos/análisis , Animales , Queso/análisis , Cromatografía Líquida de Alta Presión , Digestión , Microbiología de Alimentos , Humanos , Lactobacillus helveticus/genética , Lactobacillus helveticus/crecimiento & desarrollo , Lactobacillus helveticus/metabolismo , Espectrometría de Masas , Leche/metabolismo , Péptidos/análisis , Proteolisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
13.
Food Res Int ; 130: 108996, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32156409

RESUMEN

In vitro digestion systems are valuable tools for understanding and monitoring the complex behavior of food degradation during digestion, thus proving to be good candidates for replacing in vivo assays. The aim of the present work was to study protein hydrolysis in a selection of different protein sources using the harmonized INFOGEST static protocol: three isolated proteins (collagen, zein, and whey protein) and five foods (sorghum flour, wheat bran cereals, peanuts, black beans, and pigeon peas). The proteins of all the substrates were analyzed by SDS-PAGE and HPLC-MS/MS. Individual amino acid composition was analyzed by high-performance liquid chromatography (HPLC). EAA/NEAA (essential amino acids/ nonessential amino acids) ratios in the substrates from low to high were as follows: wheat bran cereals, peanuts, collagen, zein, whey protein, sorghum, pigeon peas, and black beans. The results revealed sorghum, whey protein, and zein as good sources of BCAA. In all substrates, no intact protein from the substrates was visually detected by SDS-PAGE after the intestinal phase of in vitro digestion with the INFOGEST protocol. However, digestion-resistant peptides were detected in all substrates after the intestinal digestion phase. Protein hydrolysis was high in whey protein isolate and pigeon pea and low for wheat bran cereals and bovine collagen.


Asunto(s)
Fibras de la Dieta/análisis , Proteínas en la Dieta/análisis , Proteínas en la Dieta/metabolismo , Digestión , Fabaceae/química , Análisis de los Alimentos , Colágeno , Sorghum/química , Proteína de Suero de Leche , Zeína/química
14.
Food Funct ; 11(2): 1702-1720, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32039430

RESUMEN

The link between food and human health is increasingly a topic of interest. One avenue of study has been to assess food disintegration and interactions within the gastrointestinal tract. In vitro digestion models have been widely used to overcome the constrictions associated with in vivo methodology. The COST Action INFOGEST developed an international, harmonised protocol for static simulation of digestion in the upper gastrointestinal tract of adults. This protocol is widely used; however, it is restricted to providing end-point assessment without considering the possible structural changes. On the other hand, there are dynamic models that provide more physiologically relevant data but are expensive and difficult to access. There is a gap between these models. The method outlined in this article provides an intermediate model; it builds upon the harmonised static model and now includes crucial kinetic aspects associated with the gastric phase of digestion, including gradual acidification, fluid and enzyme secretion and emptying. This paper provides guidance and standardised recommendations of a physiologically relevant semi-dynamic in vitro simulation of upper gastrointestinal tract digestion, with particular focus on the gastric phase. Adaptations of this model have already been used to provide kinetic data on nutrient digestion and structural changes during the gastric phase that impact on nutrient absorption. Moreover, it provides a simple tool that can be used in a wide range of laboratories.


Asunto(s)
Digestión/fisiología , Tecnología de Alimentos/métodos , Tracto Gastrointestinal/fisiología , Modelos Biológicos , Consenso , Diseño de Equipo , Tecnología de Alimentos/instrumentación , Jugo Gástrico/fisiología , Humanos , Cinética
15.
Food Chem Toxicol ; 129: 405-423, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31063834

RESUMEN

The current allergenicity assessment of novel proteins is based on the EFSA GMO guidance. Recently, EFSA launched a new guidance document on allergenicity assessment of GM plants (2017). This document describes, amongst other topics, the new scientific and regulatory developments on in vitro protein digestibility tests. The EFSA GMO Panel stated that for in vitro protein digestibility tests, additional investigations are needed before any additional recommendation in the form of guidance can be provided. To this end, an interim phase is considered necessary to evaluate the revisions to the in vitro gastrointestinal digestion test, proposed by EFSA. This prompted the establishment of a joint workshop through two COST Action networks: COST Action ImpARAS and COST Acton INFOGEST. In 2017, a workshop was organised to discuss the relevance of digestion in allergenicity risk assessment and how to potentially improve the current methods and readouts. The outcome of the workshop is that there is no rationale for a clear readout that is predictive for allergenicity and we suggest to omit the digestion test from the allergenicity assessment strategy for now, and put an effort into filling the knowledge gaps as summarized in this paper first.


Asunto(s)
Alérgenos/inmunología , Proteínas en la Dieta/metabolismo , Digestión , Hipersensibilidad a los Alimentos/inmunología , Medición de Riesgo/métodos , Proteínas en la Dieta/inmunología , Humanos
16.
Food Res Int ; 118: 32-39, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30898349

RESUMEN

In the frame of the COST action INFOGEST, a static in vitro digestion protocol has been elaborated aiming at the improvement of data comparability by harmonizing the experimental conditions. The success in harmonization was confirmed with inter-laboratory trials using skim milk powder as a standardized model food. Moreover, the physiological relevance of the gastric and intestinal endpoints of the static digestion protocol was demonstrated in a pig in vivo trial, with the same skim milk powder and samples collected from different sections of the digestive tract, as well as in a human study with from jejunal effluents. In vivo, digestion is a dynamic process influenced by peristalsis and by the gradual secretion of enzymes and juices and the dwell time of the food. To mimic these physiological mechanisms, dynamic in vitro digestion protocols are widely used. Until now, the differences of protein hydrolysis taking place during dynamic and static in vitro digestion have not been investigated. In this study, the gradual hydrolysis of the main milk proteins present in skim milk powder was digested with the dynamic DIDGI®-system using adult digestion protocol and the static harmonized INFOGEST method. Protein hydrolysis was analyzed by gel electrophoresis, peptide patterns were measured with mass spectrometry, and free amino acids with high pressure liquid chromatography. The peptide patterns at the gastric and intestinal endpoints of in vitro digestion showed a good approximation to the in vivo results from pigs. Moreover, gradual peptide generation was comparable in both in vitro digestion conditions. However, the dynamic protocol reflected the physiological situation better at the level of free amino acid release. Nonetheless, in both in vitro digestion protocols, absorption of free amino acids is not simulated, and they are therefore limited in reflecting the in vivo situation at this level.


Asunto(s)
Digestión/fisiología , Tracto Gastrointestinal/metabolismo , Proteínas de la Leche/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Humanos , Hidrólisis , Técnicas In Vitro , Intestinos , Yeyuno/metabolismo , Cinética , Espectrometría de Masas , Leche/metabolismo , Modelos Biológicos , Péptidos/química , Péptidos/aislamiento & purificación , Estómago , Porcinos
17.
Nat Protoc ; 14(4): 991-1014, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886367

RESUMEN

Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.


Asunto(s)
Materiales Biomiméticos/metabolismo , Ingredientes Alimentarios/análisis , Intestinos/enzimología , Modelos Biológicos , Boca/enzimología , Estómago/enzimología , Aminoácidos/análisis , Aminoácidos/química , Bilis/enzimología , Materiales Biomiméticos/química , Digestión/fisiología , Ingestión de Alimentos/fisiología , Pruebas de Enzimas/normas , Ácidos Grasos/análisis , Ácidos Grasos/química , Alimentos , Jugo Gástrico/enzimología , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Oligosacáridos/análisis , Oligosacáridos/química , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Saliva/enzimología
18.
Data Brief ; 21: 911-917, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30426045

RESUMEN

The data in this article are related to the research article entitled "Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion" (Egger et al., 2012). In this article, proteins identified in the different sections of pig skim milk powder (SMP) digestion are presented. In addition to the exemplary ß-casein profiles of the paper, the peptide patterns of the other most abundant milk proteins during in vivo digestion in individual pigs are shown as heatmaps and line graphs. These data clearly reveal the digestion resistant protein regions and illustrate the variability between the pigs in the different sampling sections. Moreover, peptide patterns of the same SMP proteins comparing the harmonized in vitro digestion (IVD) with pig in vivo digestion show the physiological relevance of the IVD protocol. Finally, correlation coefficients were calculated to indicate similarities between pig sampling sections and gastric and intestinal IVD endpoints.

19.
Front Microbiol ; 9: 637, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670601

RESUMEN

Lactobacillus helveticus, a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening.

20.
Food Res Int ; 102: 567-574, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29195987

RESUMEN

Recently, a static in vitro digestion (IVD) protocol was published by Minekus and coworkers (Minekus et al., 2014) within the COST INFOGEST network. The protocol, concentrating on physiological enzyme activities had the main goal to improve the comparability of experimental data between labs. The protocol was validated in several inter-laboratory studies using skim milk powder (SMP) and indeed demonstrated improved harmonization compared with previous experiments with individual IVD protocols (Egger et al., 2016). Although the enzyme activities and salt concentrations of the harmonized protocol are based on available human in vivo data, confirmation of the protocol's physiological relevance has been lacking until now. The main goal of the study was therefore to compare the harmonized IVD protocol with data from in vivo digestion. Towards this aim, an in vivo pig experiment with the same SMP as used for the validation of the IVD protocol was performed followed by a comparison of protein hydrolysis between in vivo and in vitro results. Protein hydrolysis at different levels was analyzed with gel electrophoresis, mass spectrometry, high performance liquid chromatography, and spectrophotometric o-phthaldialdehyde determination of free amino acids. Principle component analysis was used for graphical data comparison. Milk proteins detected after gastric IVD corresponded to gastric and duodenal in vivo samples and intestinal IVD samples corresponded to distal jejunal in vivo samples. Peptides identified after the gastric phase of IVD, correlated with in vivo gastric samples (r=0.8) and intestinal IVD peptides correlated best with in vivo samples collected from the median jejunum (r=0.57). Free amino acids were in both systems mainly released during the intestinal phase of digestion. Protein hydrolysis in the harmonized IVD was similar to in vivo protein hydrolysis in pigs at the gastric and intestinal endpoints. Therefore, the harmonized static in vitro protocol is suited to study protein hydrolysis at these endpoints.


Asunto(s)
Digestión/fisiología , Proteínas de la Leche/metabolismo , Porcinos/metabolismo , Animales , Duodeno/metabolismo , Alimentos en Conserva , Mucosa Gástrica/metabolismo , Humanos , Hidrólisis , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Leche/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...