RESUMEN
Background: SARS-CoV-2 vaccination in rheumatoid arthritis (RA) patients treated with B cell-depleting drugs induced limited seroconversion but robust cellular response. We aimed to document specific T and B cell immunity in response to vaccine booster doses and breakthrough infection (BTI). Methods: We included 76 RA patients treated with rituximab who received up to four SARS-CoV-2 vaccine doses or three doses plus BTI, in addition to vaccinated healthy donors (HD) and control patients treated with tumor necrosis factor inhibitor (TNFi). We quantified anti-SARS-CoV-2 receptor-binding domain (RBD) Spike IgG, anti-nucleocapsid (NC) IgG, 92 circulating inflammatory proteins, Spike-binding B cells, and Spike-specific T cells along with comprehensive high-dimensional phenotyping and functional assays. Findings: The time since the last rituximab infusion, persistent inflammation, and age were associated with the anti-SARS-CoV-2 RBD IgG seroconversion. The vaccine-elicited serological response was accompanied by an incomplete induction of peripheral Spike-specific memory B cells but occurred independently of T cell responses. Vaccine- and BTI-elicited cellular immunity was similar between RA and HD ex vivo in terms of frequency or phenotype of Spike-specific cytotoxic T cells and in vitro in terms of the functionality and differentiation profile of Spike-specific T cells. Interpretation: SARS-CoV-2 vaccination in RA can induce persistent effector T-cell responses that are reactivated by BTI. Paused rituximab medication allowed serological responses after a booster dose (D4), especially in RA with lower inflammation, enabling efficient humoral and cellular immunity after BTI, and contributed overall to the development of potential durable immunity.
Asunto(s)
Artritis Reumatoide , COVID-19 , Humanos , Rituximab/uso terapéutico , Vacunas contra la COVID-19 , SARS-CoV-2 , Infección Irruptiva , Estudios Prospectivos , Artritis Reumatoide/tratamiento farmacológico , Vacunación , Inflamación , Anticuerpos Antivirales , Inmunoglobulina GRESUMEN
Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis. One such strategy, exercise, has long been appreciated for its benefits on healthspan, but its effects on aged stem cell function in the context of tissue regeneration are incompletely understood. Here we show that exercise in the form of voluntary wheel running accelerates muscle repair in old animals and improves old MuSC function. Through transcriptional profiling and genetic studies, we discovered that the restoration of old MuSC activation ability hinges on restoration of Cyclin D1, whose expression declines with age in MuSCs. Pharmacologic studies revealed that Cyclin D1 maintains MuSC activation capacity by repressing TGFß signaling. Taken together, these studies demonstrate that voluntary exercise is a practicable intervention for old MuSC rejuvenation. Furthermore, this work highlights the distinct role of Cyclin D1 in stem cell quiescence.
Asunto(s)
Ciclina D1/metabolismo , Músculo Esquelético/citología , Condicionamiento Físico Animal , Células Madre/citología , Animales , Separación Celular , Trasplante de Células , Citometría de Flujo , Ratones , Músculo Esquelético/metabolismo , Células Madre/metabolismoRESUMEN
Strenuous exercise can result in skeletal muscle damage, leading to the systemic mobilization, activation, and intramuscular accumulation of blood leukocytes. Eicosanoid metabolites of arachidonic acid (ARA) are potent inflammatory mediators, but whether changes in dietary ARA intake influence exercise-induced inflammation is not known. This study investigated the effect of 4 wk of dietary supplementation with 1.5 g/day ARA ( n = 9, 24 ± 1.5 yr) or corn-soy oil placebo ( n = 10, 26 ± 1.3 yr) on systemic and intramuscular inflammatory responses to an acute bout of resistance exercise (8 sets each of leg press and extension at 80% one-repetition maximum) in previously trained men. Whole EDTA blood, serum, peripheral blood mononuclear cells (PMBCs), and skeletal muscle biopsies were collected before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. ARA supplementation resulted in higher exercise-stimulated serum creatine kinase activity [incremental area under the curve (iAUC) P = 0.046] and blood leukocyte counts (iAUC for total white cells, P < 0.001; neutrophils: P = 0.007; monocytes: P = 0.015). The exercise-induced fold change in peripheral blood mononuclear cell mRNA expression of interleukin-1ß ( IL1B), CD11b ( ITGAM), and neutrophil elastase ( ELANE), as well as muscle mRNA expression of the chemokines interleukin-8 ( CXCL8) and monocyte chemoattractant protein 1 ( CCL2) was also greater in the ARA group than placebo. Despite this, ARA supplementation did not influence the histological presence of leukocytes within muscle, perceived muscle soreness, or the extent and duration of muscle force loss. These data show that ARA supplementation transiently increased the inflammatory response to acute resistance exercise but did not impair recovery. NEW & NOTEWORTHY Daily arachidonic acid supplementation for 4 wk in trained men augmented the acute systemic and intramuscular inflammatory response to a subsequent bout of resistance exercise. Greater exercise-induced inflammatory responses in men receiving arachidonic acid supplementation were not accompanied by increased symptoms of exercise-induced muscle damage. Although increased dietary arachidonic acid intake does not appear to influence basal inflammation in humans, the acute inflammatory response to exercise stress is transiently increased following arachidonic acid supplementation.
Asunto(s)
Ácido Araquidónico/administración & dosificación , Ejercicio Físico/fisiología , Inflamación/tratamiento farmacológico , Entrenamiento de Fuerza/efectos adversos , Adolescente , Adulto , Antígeno CD11b/metabolismo , Quimiocina CCL2/metabolismo , Creatina Quinasa/metabolismo , Suplementos Dietéticos , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Elastasa de Leucocito/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mialgia/tratamiento farmacológico , Mialgia/metabolismo , ARN Mensajero/metabolismo , Adulto JovenRESUMEN
Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.
Asunto(s)
Ácido Araquidónico/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , Adulto , Suplementos Dietéticos , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ribosomas/metabolismo , Células Satélite del Músculo Esquelético , Adulto JovenRESUMEN
Muscle stem cells (MuSCs) persist in a quiescent state and activate in response to specific stimuli. The quiescent state is both actively maintained and dynamically regulated. However, analyses of quiescence have come primarily from cells removed from their niche. Although these cells are still quiescent, biochemical changes certainly occur during the isolation process. Here, we analyze the transcriptome of MuSCs in vivo utilizing MuSC-specific labeling of RNA. Notably, labeling transcripts during the isolation procedure revealed very active transcription of specific subsets of genes. However, using the transcription inhibitor α-amanitin, we show that the ex vivo transcriptome remains largely reflective of the in vivo transcriptome. Together, these data provide perspective on the molecular regulation of the quiescent state at the transcriptional level, demonstrate the utility of these tools for probing transcriptional dynamics in vivo, and provide an invaluable resource for understanding stem cell state transitions.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Mioblastos/metabolismo , Transcriptoma , Animales , Perfilación de la Expresión Génica/normas , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/citologíaRESUMEN
The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei.
Asunto(s)
Fibras Musculares Esqueléticas/patología , Células Satélite del Músculo Esquelético/fisiología , Animales , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Femenino , Hipertrofia/fisiopatología , Hipertrofia/prevención & control , Inmunohistoquímica , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/metabolismoRESUMEN
It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase ß-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.
Asunto(s)
Hipertrofia/fisiopatología , Músculo Esquelético/fisiología , Animales , Contracción Isométrica/fisiología , Músculo Esquelético/metabolismo , Miogenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
Asunto(s)
Adaptación Fisiológica/fisiología , Ejercicio Físico/fisiología , Metabolismo/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Transducción de Señal/fisiología , Agua/fisiología , Adulto , Frío , Humanos , Hipertrofia/fisiopatología , Masculino , Recuperación de la Función/fisiología , Entrenamiento de Fuerza/métodos , Adulto JovenRESUMEN
Previous strength training with or without the use of anabolic steroids facilitates subsequent re-acquisition of muscle mass even after long intervening periods of inactivity. Based on in vivo and ex vivo microscopy we here propose a cellular memory mechanism residing in the muscle cells. Female mice were treated with testosterone propionate for 14 days, inducing a 66% increase in the number of myonuclei and a 77% increase in fibre cross-sectional area. Three weeks after removing the drug, fibre size was decreased to the same level as in sham treated animals, but the number of nuclei remained elevated for at least 3 months (>10% of the mouse lifespan). At this time, when the myonuclei-rich muscles were exposed to overload-exercise for 6 days, the fibre cross-sectional area increased by 31% while control muscles did not grow significantly. We suggest that the lasting, elevated number of myonuclei constitutes a cellular memory facilitating subsequent muscle overload hypertrophy. Our findings might have consequences for the exclusion time of doping offenders. Since the ability to generate new myonuclei is impaired in the elderly our data also invites speculation that it might be beneficial to perform strength training when young in order to benefit in senescence.