Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204837

RESUMEN

The development of the brain, as well as mood and cognitive functions, are affected by thyroid hormone (TH) signaling. Neurons are the critical cellular target for TH action, with T3 regulating the expression of important neuronal gene sets. However, the steps involved in T3 signaling remain poorly known given that neurons express high levels of type 3 deiodinase (D3), which inactivates both T4 and T3. To investigate this mechanism, we used a compartmentalized microfluid device and identified a novel neuronal pathway of T3 transport and action that involves axonal T3 uptake into clathrin-dependent, endosomal/non-degradative lysosomes (NDLs). NDLs-containing T3 are retrogradely transported via microtubules, delivering T3 to the cell nucleus, and doubling the expression of a T3-responsive reporter gene. The NDLs also contain the monocarboxylate transporter 8 (Mct8) and D3, which transport and inactivate T3, respectively. Notwithstanding, T3 gets away from degradation because D3's active center is in the cytosol. Moreover, we used a unique mouse system to show that T3 implanted in specific brain areas can trigger selective signaling in distant locations, as far as the contralateral hemisphere. These findings provide a pathway for L-T3 to reach neurons and resolve the paradox of T3 signaling in the brain amid high D3 activity.


Asunto(s)
Simportadores , Hormonas Tiroideas , Ratones , Animales , Hormonas Tiroideas/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Axones/metabolismo , Simportadores/genética , Simportadores/metabolismo
2.
Ann Oper Res ; 324(1-2): 163-188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34876765

RESUMEN

As environmental awareness is becoming increasingly important, alternatives are needed for the traditional forward product flows of supply chains. The field of reverse logistics covers activities that aim to recover resources from their final destination, and acts as the foundation of the efficient backward flow of these materials. Designing the appropriate reverse logistics network for a given field is a crucial problem, as this provides the basis for all operations connected to the resource flow. This paper focuses on design questions in the supply network of waste wood, dealing with its collection and transportation to designated processing facilities. The facility location problem is studied for this use-case, and mathematical models are developed that consider economies of scale and the robustness of the problem. A novel approach based on bilevel optimization is used for computing the exact solutions of the robust problem on smaller instances. A local search and a tabu search method is also introduced for solving problems of realistic sizes. The developed models and methods are tested both on real-life and artificial instance sets in order to assess their performance.

3.
Nat Commun ; 13(1): 5439, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114179

RESUMEN

Serine/threonine phosphorylation of insulin receptor substrate (IRS) proteins is well known to modulate insulin signaling. However, the molecular details of this process have mostly been elusive. While exploring the role of phosphoserines, we have detected a direct link between Tyr-flanking Ser/Thr phosphorylation sites and regulation of specific phosphotyrosine phosphatases. Here we present a concise structural study on how the activity of SHP2 phosphatase is controlled by an asymmetric, dual phosphorylation of its substrates. The structure of SHP2 has been determined with three different substrate peptides, unveiling the versatile and highly dynamic nature of substrate recruitment. What is more, the relatively stable pre-catalytic state of SHP2 could potentially be useful for inhibitor design. Our findings not only show an unusual dependence of SHP2 catalytic activity on Ser/Thr phosphorylation sites in IRS1 and CD28, but also suggest a negative regulatory mechanism that may also apply to other tyrosine kinase pathways as well.


Asunto(s)
Insulina , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Antígenos CD28/metabolismo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fosfotirosina , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptor de Insulina/metabolismo , Serina/química , Treonina
4.
Nat Commun ; 11(1): 5769, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188182

RESUMEN

Transcription factor phosphorylation at specific sites often activates gene expression, but how environmental cues quantitatively control transcription is not well-understood. Activating protein 1 transcription factors are phosphorylated by mitogen-activated protein kinases (MAPK) in their transactivation domains (TAD) at so-called phosphoswitches, which are a hallmark in response to growth factors, cytokines or stress. We show that the ATF2 TAD is controlled by functionally distinct signaling pathways (JNK and p38) through structurally different MAPK binding sites. Moreover, JNK mediated phosphorylation at an evolutionarily more recent site diminishes p38 binding and made the phosphoswitch differently sensitive to JNK and p38 in vertebrates. Structures of MAPK-TAD complexes and mechanistic modeling of ATF2 TAD phosphorylation in cells suggest that kinase binding motifs and phosphorylation sites line up to maximize MAPK based co-regulation. This study shows how the activity of an ancient transcription controlling phosphoswitch became dependent on the relative flux of upstream signals.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 2/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HEK293 , Humanos , Luciferasas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Fosforilación , Unión Proteica , Dedos de Zinc
5.
J Clin Invest ; 129(1): 230-245, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30352046

RESUMEN

Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here, we report that D2 is a cargo protein in ER Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92-to-Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR). Ala92-D2 accumulated in the trans-Golgi and generated less T3, which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism-carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more, and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.


Asunto(s)
Encéfalo , Estrés del Retículo Endoplásmico , Hipotiroidismo , Yoduro Peroxidasa , Polimorfismo Genético , Respuesta de Proteína Desplegada , Sustitución de Aminoácidos , Animales , Encéfalo/enzimología , Encéfalo/patología , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Células HEK293 , Humanos , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/enzimología , Hipotiroidismo/genética , Hipotiroidismo/patología , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Ratones , Ratones Transgénicos , Mutación Missense , Tiroxina/uso terapéutico , Triyodotironina/uso terapéutico , Yodotironina Deyodinasa Tipo II
6.
Thyroid ; 26(1): 179-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26629840

RESUMEN

BACKGROUND: The firefly luciferase reporter protein is a crucial tool for studies targeting a broad range of biological questions. Importantly, luciferase assays are also widely used to explore mechanisms underlying thyroid hormone dependent regulation of gene expression. However, it was demonstrated that the firefly luciferase reporter is subject to triiodothyronine (T3)-evoked, promoter independent downregulation that is mediated by the thyroid hormone receptor. Since this effect can interfere with readout accuracy, the study aimed to find luciferase reporters that are not susceptible to this phenomenon. METHODS: Luciferase reporter constructs were generated under the control of a minimal thymidine kinase (TK) promoter and transiently transfected into JEG-3 cells to test their activity upon T3 treatment. RESULTS: Activity of the TK-(dCpG)Luc encoding a synthetic (dCpG)Luciferase and TK-NanoLuc expressing the NanoLuc reporter was not significantly changed by T3 treatment while the firefly luciferase control was suppressed by ∼2.6-fold. T3 also downregulated the activity of Renilla luciferase by ∼30%. CONCLUSIONS: Novel types of luciferase reporters, especially the synthetic (dCpG)Luciferase, can be more accurate to study T3-regulated gene expression than the classical firefly luciferase reporter. Renilla luciferase, a popular transfection control of dual luciferase assays, should be used with caution in conditions with T3 treatment.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Luciferasas/biosíntesis , Triyodotironina/farmacología , Secuencia de Bases , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Luciferasas/genética , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Timidina Quinasa/genética , Receptores alfa de Hormona Tiroidea/agonistas , Receptores alfa de Hormona Tiroidea/genética , Transfección
7.
J Clin Endocrinol Metab ; 100(3): 920-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25569702

RESUMEN

CONTEXT: A common polymorphism in the gene encoding the activating deiodinase (Thr92Ala-D2) is known to be associated with quality of life in millions of patients with hypothyroidism and with several organ-specific conditions. This polymorphism results in a single amino acid change within the D2 molecule where its susceptibility to ubiquitination and proteasomal degradation is regulated. OBJECTIVE: To define the molecular mechanisms underlying associated conditions in carriers of the Thr92Ala-D2 polymorphism. DESIGN, SETTING, PATIENTS: Microarray analyses of 19 postmortem human cerebral cortex samples were performed to establish a foundation for molecular studies via a cell model of HEK-293 cells stably expressing Thr92 or Ala92 D2. RESULTS: The cerebral cortex of Thr92Ala-D2 carriers exhibits a transcriptional fingerprint that includes sets of genes involved in CNS diseases, ubiquitin, mitochondrial dysfunction (chromosomal genes encoding mitochondrial proteins), inflammation, apoptosis, DNA repair, and growth factor signaling. Similar findings were made in Ala92-D2-expressing HEK-293 cells and in both cases there was no evidence that thyroid hormone signaling was affected ie, the expression level of T3-responsive genes was unchanged, but that several other genes were differentially regulated. The combined microarray analyses (brain/cells) led to the development of an 81-gene classifier that correctly predicts the genotype of homozygous brain samples. In contrast to Thr92-D2, Ala92-D2 exhibits longer half-life and was consistently found in the Golgi. A number of Golgi-related genes were down-regulated in Ala92-D2-expressing cells, but were normalized after 24-h-treatment with the antioxidant N-acetylecysteine. CONCLUSIONS: Ala92-D2 accumulates in the Golgi, where its presence and/or ensuing oxidative stress disrupts basic cellular functions and increases pre-apoptosis. These findings are reminiscent to disease mechanisms observed in other neurodegenerative disorders such as Huntington's disease, and could contribute to the unresolved neurocognitive symptoms of affected carriers.


Asunto(s)
Yoduro Peroxidasa/genética , Enfermedades del Sistema Nervioso/genética , Polimorfismo de Nucleótido Simple , Enfermedades de la Tiroides/genética , Transcriptoma , Adulto , Alanina/genética , Sustitución de Aminoácidos , Estudios de Casos y Controles , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Frecuencia de los Genes , Células HEK293 , Células HeLa , Humanos , Masculino , Análisis por Micromatrices , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo/genética , Síndrome , Treonina/genética , Enfermedades de la Tiroides/patología , Yodotironina Deyodinasa Tipo II
8.
J Mol Endocrinol ; 53(2): 217-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25074266

RESUMEN

Activation of thyroxine by outer ring deiodination is the crucial first step of thyroid hormone action. Substrate-induced ubiquitination of type 2 deiodinase (D2) is the most rapid and sensitive mechanism known to regulate thyroid hormone activation. While the molecular machinery responsible for D2 ubiquitination has been extensively studied, the combination of molecular features sufficient and required to allow D2 ubiquitination have not previously been determined. To address this question, we constructed chimeric deiodinases by introducing different combinations of D2-specific elements into type 1 deiodinase (D1), another member of the deiodinase enzyme family, which, however, does not undergo ubiquitination in its native form. Studies on the chimeric proteins expressed transiently in HEK-293T cells revealed that combined insertion of the D2-specific instability loop and the K237/K244 D2 ubiquitin carrier lysines into the corresponding positions of D1 could not ubiquitinate D1 unless the chimera was directed to the endoplasmic reticulum (ER). Fluorescence resonance energy transfer measurements demonstrated that the C-terminal globular domain of the ER-directed chimera was able to interact with the E3 ligase subunit WSB1. However, this interaction did not occur between the chimera and the TEB4 (MARCH6) E3 ligase, although a native D2 could readily interact with the N-terminus of TEB4. In conclusion, insertion of the instability loop and ubiquitin carrier lysines in combination with direction to the ER are sufficient and required to govern WSB1-mediated ubiquitination of an activating deiodinase enzyme.


Asunto(s)
Hormonas Tiroideas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Línea Celular , Humanos , Yoduro Peroxidasa/química , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
9.
Mol Endocrinol ; 27(12): 2105-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24196352

RESUMEN

The type II iodothyronine deiodinase (D2) is a type I endoplasmic reticulum (ER)-resident thioredoxin fold-containing selenoprotein that activates thyroid hormone. D2 is inactivated by ER-associated ubiquitination and can be reactivated by two ubiquitin-specific peptidase-class D2-interacting deubiquitinases (DUBs). Here, we used D2-expressing cell models to define that D2 ubiquitination (UbD2) occurs via K48-linked ubiquitin chains and that exposure to its natural substrate, T4, accelerates UbD2 formation and retrotranslocation to the cytoplasm via interaction with the p97-ATPase complex. D2 retrotranslocation also includes deubiquitination by the p97-associated DUB Ataxin-3 (Atx3). Inhibiting Atx3 with eeyarestatin-I did not affect D2:p97 binding but decreased UbD2 retrotranslocation and caused ER accumulation of high-molecular weight UbD2 bands possibly by interfering with the D2-ubiquitin-specific peptidases binding. Once in the cytosol, D2 is delivered to the proteasomes as evidenced by coprecipitation with 19S proteasome subunit S5a and increased colocalization with the 20S proteasome. We conclude that interaction between UbD2 and p97/Atx3 mediates retranslocation of UbD2 to the cytoplasm for terminal degradation in the proteasomes, a pathway that is accelerated by exposure to T4.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citoplasma/enzimología , Yoduro Peroxidasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Ataxina-3 , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Estabilidad de Enzimas , Células HEK293 , Humanos , Lisina/metabolismo , Transporte de Proteínas , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitinación
10.
J Clin Invest ; 120(6): 2206-17, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20458138

RESUMEN

Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.


Asunto(s)
Encéfalo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Roedores/metabolismo , Triyodotironina/metabolismo , Animales , Astrocitos/metabolismo , Células/metabolismo , Expresión Génica , Humanos , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Roedores/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/fisiología , Tiroxina/genética , Tiroxina/metabolismo , Triyodotironina/genética
11.
J Endocrinol ; 205(2): 179-86, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20176747

RESUMEN

Thyroid hormone receptor (TR) and liver X-receptor (LXR) are the master regulators of lipid metabolism. Remarkably, a mouse with a targeted deletion of both LXR alpha and LXR beta is resistant to western diet-induced obesity, and exhibits ectopic liver expression of the thyroid hormone activating type 2 deiodinase (D2). We hypothesized that LXR/retinoid X-receptor (RXR) signaling inhibits hepatic D2 expression, and studied this using a luciferase reporter containing the human DIO2 (hDIO2) promoter in HepG2 cells. Given that, in contrast to mammals, the chicken liver normally expresses D2, the chicken DIO2 (cDIO2) promoter was also studied. 22(R)-OH-cholesterol negatively regulated hDIO2 in a dose-dependent manner (100 microM, approximately twofold), while it failed to affect the cDIO2 promoter. Truncations in the hDIO2 promoter identified the region -901 to -584 bp as critical for negative regulation. We also investigated if 9-cis retinoic acid (9-cis RA), the ligand for the heterodimeric partner of TR and LXR, RXR, could regulate the hDIO2 promoter. Notably, 9-cis RA repressed the hDIO2 luciferase reporter (1 microM, approximately fourfold) in a dose-dependent manner, while coexpression of an inactive mutant RXR abolished this effect. However, it is unlikely that RXR homodimers mediate the repression of hDIO2 since mutagenesis of a DR-1 at -506 bp did not interfere with 9-cis RA-mediated repression. Our data indicate that hDIO2 transcription is negatively regulated by both 22(R)-OH-cholesterol and 9-cis RA, which is consistent with LXR/RXR involvement. In vivo, the inhibition of D2-mediated tri-iodothyronine (T(3)) production by cholesterol/9-cis RA could function as a feedback loop, given that T(3) decreases hepatic cholesterol levels.


Asunto(s)
Yoduro Peroxidasa/genética , Receptores Nucleares Huérfanos/metabolismo , Receptor alfa X Retinoide/metabolismo , Transducción de Señal , Triyodotironina/metabolismo , Secuencia de Aminoácidos , Animales , Pollos , Colesterol/metabolismo , Células Hep G2 , Humanos , Yoduro Peroxidasa/metabolismo , Hígado/metabolismo , Receptores X del Hígado , Datos de Secuencia Molecular , Receptores Nucleares Huérfanos/genética , Receptor alfa X Retinoide/genética , Alineación de Secuencia , Activación Transcripcional , Tretinoina/metabolismo , Yodotironina Deyodinasa Tipo II
12.
Mol Cell Biol ; 29(19): 5339-47, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19651899

RESUMEN

The endoplasmic reticulum resident thyroid hormone-activating type 2 deiodinase (D2) is inactivated by ubiquitination via the hedgehog-inducible WSB-1. Ubiquitinated D2 can then be subsequently taken up by the proteasomal system or be reactivated by USP-33/20-mediated deubiquitination. Given that heterologously expressed D2 accumulates in Saccharomyces cerevisiae lacking the E3 ligase Doa10, we tested whether the human Doa10 ortholog, TEB4, plays a role in D2 ubiquitination and degradation. In a setting of transient coexpression in HEK-293 cells, TEB4 and D2 could be coimmunoprecipitated, and additional TEB4 expression decreased D2 activity by approximately 50% (P < 0.05). A highly efficient TEB4 knockdown (>90% reduction in mRNA and protein levels) decreased D2 ubiquitination and increased D2 activity and protein levels by about fourfold. The other activating deiodinase, D1, or a truncated D2 molecule (Delta18-D2) that lacks a critical instability domain was not affected by TEB4 knockdown. Furthermore, TEB4 knockdown prolonged D2 activity half-life at least fourfold, even under conditions known to promote D2 ubiquitination. Neither exposure to 1 microM of the proteasomal inhibitor MG132 for 24 h nor RNA interference WSB-1 knockdown resulted in additive effects on D2 expression when combined with TEB4 knockdown. Similar results were obtained with MSTO-211 cells, which endogenously express D2, after TEB4 knockdown using a lentivirus-based transduction strategy. While TEB4 expression predominates in the hematopoietic lineage, both WSB-1 and TEB4 are coexpressed with D2 in a number of tissues and cell types, except the thyroid and brown adipose tissue, where TEB4 expression is minimal. We conclude that TEB4 interacts with and mediates loss of D2 activity, indicating that D2 ubiquitination and degradation can be tissue specific, depending on WSB-1 and TEB4 expression levels.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Encéfalo/enzimología , Proteínas Portadoras/genética , Línea Celular , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/genética , Especificidad de Órganos , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Ratas , Ratas Wistar , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Yodotironina Deyodinasa Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...