Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7652, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001119

RESUMEN

Recent studies have documented among-individual phenotypic variation that emerges in the absence of apparent genetic and environmental differences, but it remains an open question whether such seemingly stochastic variation has fitness consequences. We perform a life-history experiment with naturally clonal fish, separated directly after birth into near-identical (i.e., highly standardized) environments, quantifying 2522 offspring from 152 broods over 280 days. We find that (i) individuals differ consistently in the size of offspring and broods produced over consecutive broods, (ii) these differences are observed even when controlling for trade-offs between brood size, offspring size and reproductive onset, indicating individual differences in life-history productivity and (iii) early-life behavioral individuality in activity and feeding patterns, with among-individual differences in feeding being predictive of growth, and consequently offspring size. Thus, our study provides experimental evidence that even when minimizing genetic and environmental differences, systematic individual differences in life-history measures and ultimately fitness can emerge.


Asunto(s)
Peces , Reproducción , Animales , Reproducción/genética , Variación Biológica Poblacional
2.
Evol Dev ; 25(6): 393-409, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37026670

RESUMEN

For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype-to-phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal-response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.


Asunto(s)
Evolución Biológica , Ecología , Animales , Genotipo , Fenotipo , Genoma
3.
Proc Biol Sci ; 290(1992): 20222115, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722081

RESUMEN

Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.


Asunto(s)
Macrodatos , Evolución Biológica , Animales
4.
R Soc Open Sci ; 9(11): 221189, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36465682

RESUMEN

Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.

5.
Trends Ecol Evol ; 37(3): 233-245, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34802715

RESUMEN

Following rapid environmental change, why do some animals thrive, while others struggle? We present an expanded, cue-response framework for predicting variation in behavioral responses to novel situations. We show how signal detection theory can be used when individuals have three behavioral options (approach, avoid, or ignore). Based on this theory, we outline predictions about which animals are more likely to make mistakes around novel conditions (i.e., fall for a trap or fail to use an undervalued resource) and the intensity of that mismatch (i.e., severe versus moderate). Explicitly considering three options provides a more holistic perspective and allows us to distinguish between severe and moderate traps, which could guide management strategies in a changing world.


Asunto(s)
Evolución Biológica , Animales
6.
Am Nat ; 193(5): 619-632, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31002577

RESUMEN

Decisions made while searching for settlement sites (e.g., nesting, oviposition) often have major fitness implications. Despite numerous case studies, we lack theory to explain why some species are thriving while others are making poor habitat choices after environmental change. We develop a model to predict (1) which kinds of environmental change have larger, negative effects on fitness, (2) how evolutionary history affects susceptibility to environmental change, and (3) how much lost fitness can be recovered via readjustment after environmental change. We model the common scenario where animals search an otherwise inhospitable matrix, encountering habitats of varying quality and settling when finding a habitat better than a threshold quality level. We consider decisions and fitness before environmental change, immediately following change (assuming that animals continue to use their previously adaptive decision rules), and after optimal readjustment (e.g., via learning or evolution). We find that decreases in survival per time step searching and declines in habitat quality or availability generally have stronger negative effects than reduced season duration. Animals that were adapted to good conditions remained choosy after conditions declined and thus suffered more from environmental change than those adapted to poor conditions. Readjustment recovered much of the fitness lost through a reduction in average habitat quality but recovered much less following reductions in habitat availability or survival while searching. Our model offers novel predictions for empiricists to test as well as suggestions for prioritizing alternative mitigation steps.


Asunto(s)
Conducta de Elección , Ecosistema , Modelos Biológicos , Animales , Cambio Climático
7.
Am Nat ; 193(4): 575-587, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30912973

RESUMEN

Exotic predators can have major negative impacts on prey. Importantly, prey vary considerably in their behavioral responses to exotic predators. Factors proposed to explain variation in prey response to exotic predators include the similarity of new predators to familiar, native predators, the prevalence and diversity of predators in a prey's past, and variation in a prey's innate ability to discriminate between predators and safety. While these factors have been put forth verbally in the literature, no theory exists that combines these hypotheses in a common conceptual framework using a unified behavioral model. Here, we formalize existing verbal arguments by modeling variation in prey responses to new predators in a state-dependent detection theory framework. We find that while some conventional wisdom is upheld, novel predictions emerge. As expected, prey respond poorly to exotic predators that do not closely resemble familiar predators. Furthermore, a history with more abundant or diverse native predators can lessen effects of some exotic predators on prey; however, under some conditions, the opposite prediction emerges. Also, prey that evolved in situations where they easily discriminate between safe and dangerous situations can be more susceptible to novel predators.


Asunto(s)
Especies Introducidas , Modelos Biológicos , Conducta Predatoria , Animales , Señales (Psicología) , Cadena Alimentaria
8.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135169

RESUMEN

Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are changing ecosystems via effects on wildlife. Indeed, recent work explicitly performed under environmentally realistic conditions reveals that chemical contaminants can have both direct and indirect effects at multiple levels of organization by influencing animal behaviour. Altered behaviour reflects multiple physiological changes and links individual- to population-level processes, thereby representing a sensitive tool for holistically assessing impacts of environmentally relevant contaminant concentrations. Here, we show that even if direct effects of contaminants on behavioural responses are reasonably well documented, there are significant knowledge gaps in understanding both the plasticity (i.e. individual variation) and evolution of contaminant-induced behavioural changes. We explore implications of multi-level processes by developing a conceptual framework that integrates direct and indirect effects on behaviour under environmentally realistic contexts. Our framework illustrates how sublethal behavioural effects of contaminants can be both negative and positive, varying dynamically within the same individuals and populations. This is because linkages within communities will act indirectly to alter and even magnify contaminant-induced effects. Given the increasing pressure on wildlife and ecosystems from chemical pollution, we argue there is a need to incorporate existing knowledge in ecology and evolution to improve ecological hazard and risk assessments.


Asunto(s)
Animales Salvajes/fisiología , Conducta Animal/efectos de los fármacos , Evolución Biológica , Ecosistema , Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Rasgos de la Historia de Vida , Animales , Metales/efectos adversos , Plaguicidas/efectos adversos , Preparaciones Farmacéuticas
9.
Conserv Physiol ; 6(1): coy038, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018763

RESUMEN

California's coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally co-occurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) µatm PCO2 and 8.0 (normoxic) and 4.5 mg l-1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.

10.
Proc Biol Sci ; 284(1865)2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29046382

RESUMEN

Signal detection theory has influenced the behavioural sciences for over 50 years. The theory provides a simple equation that indicates numerous 'intuitive' results; e.g. prey should be more prone to take evasive action (in response to an ambiguous cue) if predators are more common. Here, we use analytical and computational models to show that, in numerous biological scenarios, the standard results of signal detection theory do not apply; more predators can result in prey being less responsive to such cues. The standard results need not apply when the probability of danger pertains not just to the present, but also to future decisions. We identify how responses to risk should depend on background mortality and autocorrelation, and that predictions in relation to animal welfare can also be reversed from the standard theory.


Asunto(s)
Reacción de Prevención , Señales (Psicología) , Conducta Predatoria , Animales , Aprendizaje , Modelos Biológicos
11.
Proc Biol Sci ; 284(1847)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28100814

RESUMEN

Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework 'state-dependent detection theory' (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous-but are actually safe-(e.g. ecotourists) can have catastrophic consequences for 'prey' (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead.


Asunto(s)
Adaptación Biológica , Conducta Animal , Ecosistema , Especies Introducidas , Animales , Actividades Humanas , Humanos , Conducta Predatoria
12.
Artículo en Inglés | MEDLINE | ID: mdl-26427995

RESUMEN

Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.


Asunto(s)
Ambiente , Expresión Génica/fisiología , Actividad Motora/fisiología , Poecilia/fisiología , Visión Ocular/fisiología , Animales , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Femenino , Luz , Masculino , Plasticidad Neuronal/fisiología , Opsinas/genética , Opsinas/metabolismo , Conducta Predatoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...