Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084256

RESUMEN

Choline has important physiological functions as a precursor for essential cell components, signaling molecules, phospholipids, and the neurotransmitter acetylcholine. Choline is a water-soluble charged molecule requiring transport proteins to cross biological membranes. Although transporters continue to be identified, membrane transport of choline is incompletely understood and knowledge about choline transport into intracellular organelles such as mitochondria remains limited. Here we show that SLC25A48 imports choline into human mitochondria. Human loss-of-function mutations in SLC25A48 show impaired choline transport into mitochondria and are associated with elevated urine and plasma choline levels. Thus, our studies may have implications for understanding and treating conditions related to choline metabolism.

2.
Nature ; 625(7994): 385-392, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123683

RESUMEN

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Asunto(s)
Grasas de la Dieta , Enterocitos , Metabolismo de los Lípidos , Mitocondrias , Animales , Ratones , Aspartato-ARNt Ligasa/metabolismo , Quilomicrones/metabolismo , Grasas de la Dieta/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Intestinos , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología
3.
Cell Rep ; 42(5): 112433, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37099421

RESUMEN

Lipolysis of stored triglycerides is stimulated via ß-adrenergic receptor (ß-AR)/3',5'-cyclic adenosine monophosphate (cAMP) signaling and inhibited via phosphodiesterases (PDEs). In type 2 diabetes, a dysregulation in the storage/lipolysis of triglycerides leads to lipotoxicity. Here, we hypothesize that white adipocytes regulate their lipolytic responses via the formation of subcellular cAMP microdomains. To test this, we investigate real-time cAMP/PDE dynamics at the single-cell level in human white adipocytes with a highly sensitive florescent biosensor and uncover the presence of several receptor-associated cAMP microdomains where cAMP signals are compartmentalized to differentially regulate lipolysis. In insulin resistance, we also detect cAMP microdomain dysregulation mechanisms that promote lipotoxicity, but regulation can be restored by the anti-diabetic drug metformin. Therefore, we present a powerful live-cell imaging technique capable of resolving disease-driven alterations in cAMP/PDE signaling at the subcellular level and provide evidence to support the therapeutic potential of targeting these microdomains.


Asunto(s)
Diabetes Mellitus Tipo 2 , Lipólisis , Humanos , Lipólisis/fisiología , Adipocitos Blancos/metabolismo , AMP Cíclico/metabolismo , Receptores Adrenérgicos beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...