RESUMEN
Cell- and antibody-based CD19-directed therapies have demonstrated great potential for treating B-cell non-Hodgkin lymphoma (B-NHL). However, all these approaches suffer from limited response rates and considerable toxicity. Until now, therapy decisions have been routinely based on histopathological CD19 staining of a single lesion at initial diagnosis or relapse, disregarding heterogeneity and temporal alterations in antigen expression. To visualize in vivo CD19 expression noninvasively, we radiolabeled anti-human CD19 monoclonal antibodies with copper-64 (64Cu-αCD19) for positron emission tomography (CD19-immunoPET). 64Cu-αCD19 specifically bound to subcutaneous Daudi xenograft mouse models in vivo. Importantly, 64Cu-αCD19 did not affect the anti-lymphoma cytotoxicity of CD19 CAR-T cells in vitro. Following our preclinical validation, 64Cu-αCD19 was injected into four patients with follicular lymphoma, diffuse large B-cell lymphoma or mantle zone lymphoma. We observed varying 64Cu-αCD19 PET uptake patterns at different lymphoma sites, both within and among patients, correlating with ex vivo immunohistochemical CD19 expression. Moreover, one patient exhibited enhanced uptake in the spleen compared to that in patients with prior B-cell-depleting therapy, indicating that 64Cu-αCD19 is applicable for identifying B-cell-rich organs. In conclusion, we demonstrated the specific targeting and visualization of CD19+ B-NHL in mice and humans by CD19-immunoPET. The intra- and interindividual heterogeneous 64Cu-αCD19 uptake patterns of lymphoma lesions indicate variability in CD19 expression, suggesting the potential of CD19-immunoPET as a novel tool to guide CD19-directed therapies.
RESUMEN
Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.
Asunto(s)
Inmunidad Adaptativa , Amiloidosis , Encéfalo , Dieta Occidental , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/inmunología , Amiloidosis/metabolismo , Amiloidosis/patología , Amiloidosis/inmunología , Dieta Occidental/efectos adversos , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/inmunologíaRESUMEN
Aim/Introduction: Despite the spectacular success of immune checkpoint inhibitor therapy (ICT) in patients with metastatic cancer, only a limited proportion of patients benefit from ICT. CD8+ cytotoxic T cells are important gatekeepers for the therapeutic response to ICT and are able to recognize MHC class I-dependent tumor antigens and destroy tumor cells. The radiolabeled minibody [89Zr]Zr-Df-IAB22M2C has a high affinity for human CD8+ T cells and was successfully tested in a phase I study. Here, we aimed to gain the first clinical PET/MRI experience with the noninvasive assessment of the CD8+ T-cell distribution in cancer patients by in vivo [89Zr]Zr-Df-IAB22M2C with a distinct focus of identifying potential signatures of successful ICT. Material and Methods: We investigated 8 patients with metastasized cancers undergoing ICT. Radiolabeling of Df-IAB22M2C with Zr-89 was performed according to Good Manufacturing Practice. Multiparametric PET/MRI was acquired 24 h after injection of 74.2±17.9 MBq [89Zr]Zr-Df-IAB22M2C. We analyzed [89Zr]Zr-Df-IAB22M2C uptake within the metastases and within primary and secondary lymphatic organs. Results: [89Zr]Zr-Df-IAB22M2C injection was tolerated well without noticeable side effects. The CD8 PET/MRI data acquisitions 24 hours post-administration of [89Zr]Zr-Df-IAB22M2C revealed good image quality with a relatively low background signal due to only low unspecific tissue uptake and marginal blood pool retention. Only two metastatic lesions showed markedly increased tracer uptake in our cohort of patients. Furthermore, we observed high interpatient variability in [89Zr]Zr-Df-IAB22M2C uptake within the primary and secondary lymphoid organs. Four out of five ICT patients exhibited rather high [89Zr]Zr-Df-IAB22M2C uptake in the bone marrow. Two of these four patients as well as two other patients yielded pronounced [89Zr]Zr-Df-IAB22M2C uptake within nonmetastatic lymph nodes. Interestingly, cancer progression in ICT patients was associated with a relatively low [89Zr]Zr-Df-IAB22M2C uptake in the spleen compared to the liver in 4 out of the 6 patients. Lymph nodes with enhanced [89Zr]Zr-Df-IAB22M2C uptake revealed significantly reduced apparent diffusion coefficient (ADC) values in diffusion weighted MRI. Conclusion: Our first clinical experiences revealed the feasibility of [89Zr]Zr-Df-IAB22M2C PET/MRI in assessing potential immune-related changes in metastases and primary and secondary lymphatic organs. According to our results, we hypothesize that alterations in [89Zr]Zr-Df-IAB22M2C uptake in primary and secondary lymphoid organs might be associated with the response to ICT.
Asunto(s)
Neoplasias , Radioisótopos , Humanos , Linfocitos T CD8-positivos , Línea Celular Tumoral , Imagen por Resonancia Magnética , Neoplasias/patología , Tomografía de Emisión de Positrones/métodos , CirconioRESUMEN
Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells of the myeloid compartment and major players in the tumor microenvironment (TME). With increasing numbers of studies describing MDSC involvement in cancer immune escape, cancer metastasis and the dampening of immunotherapy responses, MDSCs are of high interest in current cancer therapy research. Although heavily investigated in the last decades, the in vivo migration dynamics of MDSC subpopulations in tumor- or metastases-bearing mice have not yet been studied extensively. Therefore, we have modified our previously reported intracellular cell labeling method and applied it to in vitro generated MDSCs for the quantitative in vivo monitoring of MDSC migration in primary and metastatic cancer. MDSC migration to primary cancers was further correlated to the frequency of endogenous MDSCs. Methods: Utilizing a 64Cu-labeled 1,4,7-triazacyclononane-triacetic acid (NOTA)-modified CD11b-specific monoclonal antibody (mAb) (clone M1/70), we were able to label in vitro generated polymorphonuclear (PMN-) and monocytic (M-) MDSCs for positron emission tomography (PET) imaging. Radiolabeled PMN- and M-MDSCs ([64Cu]PMN-MDSCs and [64Cu]M-MDSCs, respectively) were then adoptively transferred into primary and metastatic MMTV-PyMT-derived (PyMT-) breast cancer- and B16F10 melanoma-bearing experimental animals, and static PET and anatomical magnetic resonance (MR) images were acquired 3, 24 and 48 h post cell injection. Results: The internalization of the [64Cu]NOTA-mAb-CD11b-complex was completed within 3 h, providing moderately stable radiolabeling with little detrimental effect on cell viability and function as determined by Annexin-V staining and T cell suppression in flow cytometric assays. Further, we could non-invasively and quantitatively monitor the migration and tumor homing of both [64Cu]NOTA-αCD11b-mAb-labeled PMN- and M-MDSCs in mouse models of primary and metastatic breast cancer and melanoma by PET. We were able to visualize and quantify an increased migration of adoptively transferred [64Cu]M-MDSCs than [64Cu]PMN-MDSCs to primary breast cancer lesions. The frequency of endogenous MDSCs in the PyMT breast cancer and B16F10 melanoma model correlated to the uptake values of adoptively transferred MDSCs with higher frequencies of PMN- and M-MDSCs in the more aggressive B16F10 melanoma tumors. Moreover, aggressively growing melanomas and melanoma-metastatic lesions recruited higher percentages of both [64Cu]PMN- and [64Cu]M-MDSCs than primary and metastatic breast cancer lesions as early as 24 h post adoptive MDSC transfer, indicating an overall stronger recruitment of cancer-promoting immunosuppressive MDSCs. Conclusion: Targeting of the cell surface integrin CD11b with a radioactive mAb is feasible for labeling of murine MDSCs for PET imaging. Fast internalization of the [64Cu]NOTA-αCD11b-mAb provides presumably enhanced stability while cell viability and functionality was not significantly affected. Moreover, utilization of the CD11b-specific mAb allows for straightforward adaptation of the labeling approach for in vivo molecular imaging of other myeloid cells of interest in cancer therapy, including monocytes, macrophages or neutrophils.
Asunto(s)
Células Supresoras de Origen Mieloide/citología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Cinética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/fisiología , Tomografía de Emisión de Positrones , Células Tumorales Cultivadas , Microambiente Tumoral/fisiologíaRESUMEN
The catecholamine analogue [123 I]mIBG has been used for scintigraphic imaging of neuroblastoma since 1984. It is taken up by the noradrenaline transporter (NAT), which is present in most neuroblastoma cells. An alternative imaging method could be PET with 6-[18 F]fluorodopamine, which is also taken up by NAT, but-in contrast to mIBG-also by dopamine transporter (DAT), present in neuroblastoma cells (NAT > DAT). An enzymatic method was established allowing a rapid, quantitative transformation of FDOPA to FDA by DOPA decarboxylase within 25 minutes. This strategy was applied to [18 F]FDOPA, which was produced via nucleophilic synthesis (RCY 15%, 10 GBq, 50 GBq/µmol) and subsequently converted to [18 F]FDA (RCY 35%-50%, n = 5). Uptake and metabolism of FDOPA and FDA were analyzed in human Kelly and SK-N-SH neuroblastoma cell lines and in human Caki-1 kidney cells that can take up catecholamines and mIBG via an organic cation transporter (OCT). FDOPA and FDA were taken up by all three cells, but FDOPA could only be converted to FDA in neuroblastoma cells. As today, [18 F]FDOPA is well available in high yields, efficient enzymatic conversion to [18 F]FDA to be used for NAT/DAT PET imaging in neuroendocrine tumors is an attractive, alternative synthesis route.
Asunto(s)
Dihidroxifenilalanina/análogos & derivados , Dopamina/análogos & derivados , Enzimas/metabolismo , Neuroblastoma/patología , Transporte Biológico , Línea Celular Tumoral , Técnicas de Química Sintética , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Dopamina/síntesis química , Dopamina/química , Dopamina/metabolismo , Humanos , CinéticaRESUMEN
The benefits of PET imaging of tumor hypoxia in patient management has been demonstrated in many examples and with various tracers over the last years. Although, the optimal hypoxia imaging agent has yet to be found, 2-nitroimidazole (azomycin) sugar derivatives-mimicking nucleosides-have proven their potential with [18F]FAZA ([18F]fluoro-azomycin-α-arabinoside) as a prominent representative in clinical use. Still, for all of these tracers, cellular uptake by passive diffusion is postulated with the disadvantage of slow kinetics and low tumor-to-background ratios. We recently evaluated [18F]fluoro-azomycin-ß-deoxyriboside (ß-[18F]FAZDR), with a structure more similar to nucleosides than [18F]FAZA and possible interaction with nucleoside transporters. For a deeper insight, we comparatively studied the interaction of FAZA, ß-FAZA, α-FAZDR and ß-FAZDR with nucleoside transporters (SLC29A1/2 and SLC28A1/2/3) in vitro, showing variable interactions of the compounds. The highest interactions being for ß-FAZDR (IC50 124 ± 33 µM for SLC28A3), but also for FAZA with the non-nucleosidic α-configuration, the interactions were remarkable (290 ± 44 µM {SLC28A1}; 640 ± 10 µM {SLC28A2}). An improved synthesis was developed for ß-FAZA. For a PET study in tumor-bearing mice, α-[18F]FAZDR was synthesized (radiochemical yield: 15.9 ± 9.0% (n = 3), max. 10.3 GBq, molar activity > 50 GBq/µmol) and compared to ß-[18F]FAZDR and [18F]FMISO, the hypoxia imaging gold standard. We observed highest tumor-to-muscle ratios (TMR) for ß-[18F]FAZDR already at 1 h p.i. (2.52 ± 0.94, n = 4) in comparison to [18F]FMISO (1.37 ± 0.11, n = 5) and α-[18F]FAZDR (1.93 ± 0.39, n = 4), with possible mediation by the involvement of nucleoside transporters. After 3 h p.i., TMR were not significantly different for all 3 tracers (2.5â»3.0). Highest clearance from tumor tissue was observed for ß-[18F]FAZDR (56.6 ± 6.8%, 2 h p.i.), followed by α-[18F]FAZDR (34.2 ± 7.5%) and [18F]FMISO (11.8 ± 6.5%). In conclusion, both isomers of [18F]FAZDR showed their potential as PET hypoxia tracers. Differences in uptake behavior may be attributed to a potential variable involvement of transport mechanisms.
RESUMEN
The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1high monocyte infiltration into the kidney. Indeed, the number of Gr1high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1high monocytes. Lack of Gr1high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease.
Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Síndrome Hemolítico-Urémico/inmunología , Riñón/patología , Monocitos/inmunología , Receptores CCR2/metabolismo , Animales , Antígenos Ly/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Humanos , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores CCR2/genética , Receptores CXCR3/genética , Toxina Shiga II/administración & dosificaciónRESUMEN
Many pathophysiological processes are associated with proliferation, migration or death of distinct cell populations. Monitoring specific cell types and their progeny in a non-invasive, longitudinal and quantitative manner is still challenging. Here we show a novel cell-tracking system that combines Cre/lox-assisted cell fate mapping with a thymidine kinase (sr39tk) reporter gene for cell detection by positron emission tomography (PET). We generate Rosa26-mT/sr39tk PET reporter mice and induce sr39tk expression in platelets, T lymphocytes or cardiomyocytes. As proof of concept, we demonstrate that our mouse model permits longitudinal PET imaging and quantification of T-cell homing during inflammation and cardiomyocyte viability after myocardial infarction. Moreover, Rosa26-mT/sr39tk mice are useful for whole-body characterization of transgenic Cre mice and to detect previously unknown Cre activity. We anticipate that the Cre-switchable PET reporter mice will be broadly applicable for non-invasive long-term tracking of selected cell populations in vivo.Non-invasive cell tracking is a powerful method to visualize cells in vivo under physiological and pathophysiological conditions. Here Thunemann et al. generate a mouse model for in vivo tracking and quantification of specific cell types by combining a PET reporter gene with Cre-dependent activation that can be exploited for any cell population for which a Cre mouse line is available.
Asunto(s)
Rastreo Celular/métodos , Integrasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Recombinación Genética/genética , Animales , Fluorodesoxiglucosa F18 , Genes Reporteros , Inflamación/patología , Ratones , Infarto del Miocardio/patología , Linfocitos T/inmunología , Timidina Quinasa/metabolismoRESUMEN
The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characterization of animal disease models. Previously, we demonstrated that an endothelial cell-specific ablation of the murine Serum Response Factor (SrfiECKO) results in blood brain barrier (BBB) breakdown and hemorrhagic stroke. Taking advantage of this mouse model we here perform a comprehensive longitudinal, multiparametric and in vivo imaging approach to reveal pathophysiological processes occurring before and during the appearance of cerebral microbleeds using combined PET and MRI. We complement our imaging results with data regarding animal behavior and immunohistochemistry. Our results demonstrate diffusion abnormalities in the cortical brain tissue prior to the onset of cerebral microbleeds. Diffusion reductions were accompanied by significant increments of [18F]FAZA uptake before the onset of the lesions in T2WI. The Open Field behavioral tests revealed reduced activity of SrfiECKO animals, whereas histology confirmed the presence of hemorrhages in cortical regions of the mouse brain and iron deposition at lesion sites with increased hypoxia inducible factor 1α, CD31 and glial fibrillary acidic protein expression. For the first time, we performed a thorough evaluation of the prodromal period before the occurrence of spontaneous cerebral microbleeds. Using in vivo PET and MRI, we show the pathological tissue changes that occur previous to gross blood brain barrier (BBB) disruption and breakage. In addition, our results show that apparent diffusion coefficient (ADC) reduction may be an early biomarker of BBB disruption proposing an alternate clinical interpretation. Furthermore, our findings remark the usefulness of this novel SrfiECKO mouse model to study underlying mechanisms of hemorrhagic stroke.
Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Hemorragias Intracraneales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Síntomas Prodrómicos , Accidente Cerebrovascular/diagnóstico , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones TransgénicosRESUMEN
BACKGROUND: 1-α-D-(5-Deoxy-5-[18F]fluoroarabinofuranosyl)-2-nitroimidazole([18F] FAZA) is a PET radiotracer that demonstrates excellent potential in imaging regional hypoxia, and is clinically used in diagnosing a wide range of solid tumors in cancer patients. [18F]FAZA, however, is radiofluorinated in only moderate recovered radiochemical yield (rRCY, ~12%). It is postulated that the relative stability of the C1' ß-anomeric bond at C5' will make 1-ß-D-(5-fluoro-5-deoxyarabinofuranosyl)-2-nitroimidazole (ß-FAZA), the ß-conformer of FAZA, an attractive candidate for clinical hypoxia imaging. OBJECTIVES: The principle goals were to synthesize ß-FAZA and ß-Ac2TsAZA, the radiofluorination precursor, to establish the radiofluorination chemistry leading to ß-[18F]FAZA, and to investigate the biodistribution of ß-[18F]FAZA in an animal tumor-bearing model using PET imaging. METHODS: The appropriately-protected furanose sugar was coupled with 2-nitroimidazole to afford 1-ß-D-(2,3-di-O-acetylarabinofuranosyl)-2-nitroimidazole (ß-Ac2AZA). Fluorination of ß-Ac2AZA with DAST, followed by alkaline hydrolysis, afforded ß-FAZA (21%). The radiolabeling synthon, 1-ß-D-(5-O-toluenesulfonyl-2,3-di-O-acetylarabinofuranosyl)-2-nitroimidazole (ß-Ac2TsAZA), on radiofluorination using the 18F/K222 complex under various reaction conditions, followed by base-catalyzed deacetylation, afforded ß-[18F]FAZA. ß-[18F]FAZA was radiochemically stable for at least 8 h when stored in aqueous ethanol (8%) at 22 °C. A preliminary PET imaging-based biodistribution study of ß-[18F]FAZA was performed in A431 tumor-bearing nude mice. RESULTS: ß-FAZA and ß-Ac2TsAZA were synthesized in satisfactory yield. Radiochemistry of [18F]FAZA was established. PET images showed strong uptake in hypoxic regions of the tumor. CONCLUSION: The synthesis of ß-FAZA and ß-[18F]FAZA are reported. Radiofluorination of ß-Ac2TsAZA and the deprotection of ß-Ac2[18F]FAZA were facile, but led to a more complex mixture of radiofluorinated by-products than observed with the corresponding precursor of α-[18F]FAZA. PET images were indicative of hypoxia-selective accumulation of ß-[18F]FAZA in tumor.
Asunto(s)
Neoplasias/diagnóstico por imagen , Nitroimidazoles/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/síntesis química , Hipoxia Tumoral , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Radioisótopos de Flúor , Masculino , Ratones , Ratones Desnudos , Radioquímica , Distribución TisularRESUMEN
INTRODUCTION: Radiolabeled 2-nitroimidazoles (azomycins) are a prominent class of biomarkers for PET imaging of hypoxia. [18F]Fluoro-azomycin-α-arabinoside ([18F]FAZA) - already in clinical use - may be seen as α-configuration nucleoside, but enters cells only via diffusion and is not transported by cellular nucleoside transporters. To enhance image contrast in comparison to [18F]FAZA our objective was to 18F-radiolabel an azomycin-2´-deoxyriboside with ß-configuration ([18F]FAZDR, [18F]-ß-8) to mimic nucleosides more closely and comparatively evaluate it versus [18F]FAZA. METHODS: Precursor and cold standards for [18F]FAZDR were synthesized from methyl 2-deoxy-d-ribofuranosides α- and ß-1 in 6 steps yielding precursors α- and ß-5. ß-5 was radiolabeled in a GE TRACERlab FXF-N synthesizer in DMSO and deprotected with NH4OH to give [18F]FAZDR ([18F]-ß-8). [18F]FAZA or [18F]FAZDR was injected in BALB/c mice bearing CT26 colon carcinoma xenografts, PET scans (10min) were performed after 1, 2 and 3h post injection (p.i.). On a subset of mice injected with [18F]FAZDR, we analyzed biodistribution. RESULTS: [18F]FAZDR was obtained in non-corrected yields of 10.9±2.4% (9.1±2.2GBq, n=4) 60min EOB, with radiochemical purity >98% and specific activity >50GBq/µmol. Small animal PET imaging showed a decrease in uptake over time for both [18F]FAZDR (1h p.i.: 0.56±0.22% ID/cc, 3h: 0.17±0.08% ID/cc, n=9) and [18F]FAZA (1h: 1.95±0.59% ID/cc, 3h: 0.87±0.55% ID/cc), whereas T/M ratios were significantly higher for [18F]FAZDR at 1h (2.76) compared to [18F]FAZA (1.69, P<0.001), 3h p.i. ratios showed no significant difference. Moreover, [18F]FAZDR showed an inverse correlation between tracer uptake in carcinomas and oxygen breathing, while muscle tissue uptake was not affected by switching from air to oxygen. CONCLUSIONS: First PET imaging results with [18F]FAZDR showed advantages over [18F]FAZA regarding higher tumor contrast at earlier time points p.i. Availability of precursor and cold fluoro standard together with high output radiosynthesis will allow for a more detailed quantitative evaluation of [18F]FAZDR, especially with regard to mechanistic studies whether active transport processes are involved, compared to passive diffusion as observed for [18F]FAZA.
Asunto(s)
Nitroimidazoles , Nucleósidos , Tomografía de Emisión de Positrones/métodos , Hipoxia Tumoral , Animales , Línea Celular Tumoral , Femenino , Ratones , Nitroimidazoles/química , Nitroimidazoles/farmacocinética , Nucleósidos/química , Nucleósidos/farmacocinética , Radioquímica , Distribución TisularRESUMEN
Antibody-based therapies gain momentum in clinical therapy, thus the need for accurate imaging modalities with respect to target identification and therapy monitoring are of increasing relevance. Cerenkov luminescence imaging (CLI) are a novel method detecting charged particles emitted during radioactive decay with optical imaging. Here, we compare Position Emission Tomography (PET) with CLI in a multimodal imaging study aiming at the fast and efficient screening of monoclonal antibodies (mAb) designated for targeting of the neuroblastoma-characteristic epitope disialoganglioside GD2. Neuroblastoma-bearing SHO mice were injected with a 64Cu-labeled GD2-specific mAb. The tumor uptake was imaged 3 h, 24 h and 48 h after tracer injection with both, PET and CLI, and was compared to the accumulation in GD2-negative control tumors (human embryonic kidney, HEK-293). In addition to an in vivo PET/CLI-correlation over time, we also demonstrate linear correlations of CLI- and γ-counter-based biodistribution analysis. CLI with its comparably short acquisition time can thus be used as an attractive one-stop-shop modality for the longitudinal monitoring of antibody-based tumor targeting and ex vivo biodistribution.These findings suggest CLI as a reliable alternative for PET and biodistribution studies with respect to fast and high-throughput screenings in subcutaneous tumors traced with radiolabeled antibodies. However, in contrast to PET, CLI is not limited to positron-emitting isotopes and can therefore also be used for the visualization of mAb labeled with therapeutic isotopes like electron emitters.
Asunto(s)
Radioisótopos de Cobre/farmacocinética , Mediciones Luminiscentes/métodos , Neuroblastoma/diagnóstico por imagen , Radiofármacos/farmacocinética , Animales , Anticuerpos Monoclonales/farmacocinética , Humanos , Ratones , Ratones SCID , Tomografía de Emisión de Positrones , Distribución TisularRESUMEN
UNLABELLED: Serotonin, or 5-hydroxytryptamine (5-HT), plays a key role in the central nervous system and is involved in many essential neurologic processes such as mood, social behavior, and sleep. The serotonin transporter ligand (11)C-3-amino-4(2-dimethylaminomethyl-phenylsufanyl)-benzonitrile ((11)C-DASB) has been used to determine nondisplaceable binding potential (BPND), which is defined as the quotient of the available receptor density (Bavail) and the apparent equilibrium dissociation rate constant (1/appKD) under in vivo conditions. Because of the increasing number of animal models of human diseases, there is a pressing need to evaluate the applicability of (11)C-DASB to rats and mice. Here, we assessed the feasibility of using (11)C-DASB for quantification of serotonin transporter (SERT) density and affinity in vivo in rats and mice. METHODS: Rats and mice underwent 4 PET scans with increasing doses of the unlabeled ligand to calculate Bavail and appKD using the multiple-ligand concentration transporter assay. An additional PET scan was performed to calculate test-retest reproducibility and reliability. BPND was calculated using the simplified reference tissue model, and the results for different reference regions were compared. RESULTS: Displaceable binding of (11)C-DASB was found in all brain regions of both rats and mice, with the highest binding being in the thalamus and the lowest in the cerebellum. In rats, displaceable binding was largely reduced in the cerebellar cortex, which in mice was spatially indistinguishable from cerebellar white matter. Use of the cerebellum with fully saturated binding sites as the reference region did not lead to reliable results. Test-retest reproducibility in the thalamus was more than 90% in both mice and rats. In rats, Bavail, appKD, and ED50 were 3.9 ± 0.4 pmol/mL, 2.2 ± 0.4 nM, and 12.0 ± 2.6 nmol/kg, respectively, whereas analysis of the mouse measurements resulted in inaccurate fits due to the high injected tracer mass. CONCLUSION: Our data showed that in rats, (11)C-DASB can be used to quantify SERT density with good reproducibility. BPND agreed with the distribution of SERT in the rat brain. It remains difficult to estimate quantitative parameters accurately from mouse measurements because of the high injected tracer mass and underestimation of the binding parameters due to high displaceable binding in the reference region.
Asunto(s)
Compuestos de Anilina , Tomografía de Emisión de Positrones/métodos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sulfuros , Animales , Humanos , Cinética , Masculino , Ratones , Tomografía de Emisión de Positrones/normas , Ratas , Estándares de Referencia , Reproducibilidad de los ResultadosRESUMEN
T cells are key players in inflammation, autoimmune diseases, and immunotherapy. Thus, holistic and noninvasive in vivo characterizations of the temporal distribution and homing dynamics of lymphocytes in mammals are of special interest. Herein, we show that PET-based T-cell labeling facilitates quantitative, highly sensitive, and holistic monitoring of T-cell homing patterns in vivo. We developed a new T-cell receptor (TCR)-specific labeling approach for the intracellular labeling of mouse T cells. We found that continuous TCR plasma membrane turnover and the endocytosis of the specific (64)Cu-monoclonal antibody (mAb)-TCR complex enables a stable labeling of T cells. The TCR-mAb complex was internalized within 24 h, whereas antigen recognition was not impaired. Harmful effects of the label on the viability, DNA-damage and apoptosis-necrosis induction, could be minimized while yielding a high contrast in in vivo PET images. We were able to follow and quantify the specific homing of systemically applied (64)Cu-labeled chicken ovalbumin (cOVA)-TCR transgenic T cells into the pulmonary and perithymic lymph nodes (LNs) of mice with cOVA-induced airway delayed-type hypersensitivity reaction (DTHR) but not into pulmonary and perithymic LNs of naïve control mice or mice diseased from turkey or pheasant OVA-induced DTHR. Our protocol provides consequent advancements in the detection of small accumulations of immune cells in single LNs and specific homing to the sites of inflammation by PET using the internalization of TCR-specific mAbs as a specific label of T cells. Thus, our labeling approach is applicable to other cells with constant membrane receptor turnover.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos/antagonistas & inhibidores , Linfocitos T/diagnóstico por imagen , Animales , Apoptosis/inmunología , Radioisótopos de Cobre , Daño del ADN/inmunología , Ratones , Trazadores Radiactivos , Radiografía , Receptores de Antígenos/inmunología , Linfocitos T/inmunologíaRESUMEN
We aimed to quantitatively characterize the treatment effects of docetaxel in the HCT116 xenograft mouse model, applying diffusion-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET) using 2-deoxy-2-[¹8F]fluoro-d-glucose ([¹8F]FDG) and 3'-deoxy-3'-[¹8F]-fluorothymidine ([¹8F]FLT). Mice were imaged at four time points over 8 days. Docetaxel (15 mg/kg) was administered after a baseline scan. Voxel-wise scatterplots of PET and apparent diffusion coefficient (ADC) data of tumor volumes were evaluated with a threshold cluster analysis and compared to histology (GLUT1, GLUT3, Ki67, activated caspase 3a). Compared to the extensive tumor growth observed in the vehicle-treated group (from 0.32 ± 0.21 cm³ to 0.69 ± 0.40 cm³), the administration of docetaxel led to tumor growth stasis (from 0.32 ± 0.20 cm³ to 0.45 ± 0.23 cm³). The [¹8F]FDG/ADC cluster analysis and the evaluation of peak histogram values revealed a significant treatment effect matching histology as opposed to [¹8F]FLT/ADC. [¹8F]FLT uptake and the Ki67 index were not in good agreement. Our voxel-based cluster analysis uncovered treatment effects not seen in the separate inspection of PET and MRI data and may be used as an independent analysis tool. [¹8F]FLT/ADC cluster analysis could still point out the treatment effect; however, [¹8F]FDG/ADC reflected the histology findings in higher agreement.
Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Didesoxinucleósidos , Radiofármacos , Taxoides/administración & dosificación , Animales , Imagen de Difusión por Resonancia Magnética , Docetaxel , Femenino , Fluorodesoxiglucosa F18 , Células HCT116 , Humanos , Ratones , Imagen Multimodal , Tomografía de Emisión de Positrones , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
UNLABELLED: Although T cells can be labeled for noninvasive in vivo imaging, little is known about the impact of such labeling on T-cell function, and most imaging methods do not provide holistic information about trafficking kinetics, homing sites, or quantification. METHODS: We developed protocols that minimize the inhibitory effects of (64)Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) ((64)Cu-PTSM) labeling on T-cell function and permit the homing patterns of T cells to be followed by PET. Thus, we labeled ovalbumin (OVA) T-cell receptor transgenic interferon (IFN)-γ-producing CD4(+) T (Th1) cells with 0.7-2.2 MBq of (64)Cu-PTSM and analyzed cell viability, IFN-γ production, proliferation, apoptosis, and DNA double-strand breaks and identified intracellular (64)Cu accumulation sites by energy dispersive x-ray analysis. To elucidate the fate of Th1 cell homing by PET, 10(7 64)Cu-OVA-Th1 cells were injected intraperitoneally or intravenously into healthy mice. To test the functional capacities of (64)Cu-OVA-Th1 cells during experimental OVA-induced airway hyperreactivity, we injected 10(7 64)Cu-OVA-Th1 cells intraperitoneally into OVA-immunized or nonimmunized healthy mice, which were challenged with OVA peptide or phosphate-buffered saline or remained untreated. In vivo PET investigations were followed by biodistribution, autoradiography, and fluorescence-activated cell sorting analysis. RESULTS: PET revealed unexpected homing patterns depending on the mode of T-cell administration. Within 20 min after intraperitoneal administration, (64)Cu-OVA-Th1 cells homed to the perithymic lymph nodes (LNs) of naive mice. Interestingly, intravenously administered (64)Cu-OVA-Th1 cells homed predominantly into the lung and spleen but not into the perithymic LNs. The accumulation of (64)Cu-OVA-Th1 cells in the pulmonary LNs (6.8 ± 1.1 percentage injected dose per cubic centimeter [%ID/cm(3)]) 24 h after injection was highest in the OVA-immunized and OVA-challenged OVA airway hyperreactivity-diseased littermates 24 h after intraperitoneal administration and lowest in the untreated littermates (3.7 ± 0.4 %ID/cm(3)). As expected, (64)Cu-OVA-Th1 cells also accumulated significantly in the pulmonary LNs of nonimmunized OVA-challenged animals (6.1 ± 0.5 %ID/cm(3)) when compared with phosphate-buffered saline-challenged animals (4.6 ± 0.5 %ID/cm(3)). CONCLUSION: Our protocol permits the detection of Th1 cells in single LNs and enables temporal in vivo monitoring of T-cell homing over 48 h. This work enables future applications for (64)Cu-PTSM-labeled T cells in clinical trials and novel therapy concepts focusing on T-cell-based immunotherapies of autoimmune diseases or cancer.
Asunto(s)
Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/diagnóstico por imagen , Compuestos Organometálicos , Tomografía de Emisión de Positrones/métodos , Células TH1/citología , Tiosemicarbazonas , Animales , Apoptosis , Autoinmunidad , Movimiento Celular , Proliferación Celular , Separación Celular , Supervivencia Celular , Radioisótopos de Cobre , Roturas del ADN de Doble Cadena , Citometría de Flujo , Inmunoterapia/métodos , Interferón gamma/metabolismo , Ganglios Linfáticos/patología , Ratones , Péptidos/química , Factores de Tiempo , Distribución TisularRESUMEN
BACKGROUND: The prostate specific membrane antigen (PSMA) is expressed by virtually all prostate cancers and represents an ideal target for diagnostic and therapeutic strategies. This article compares the in vivo behavior and tumor uptake of three different radiolabeled anti-PSMA monoclonal antibodies (mAbs) and corresponding F(ab)(2) and Fab fragments thereof. METHODS: The mAbs 3/A12, 3/F11, and 3/E7 and fragments of 3/A12 were conjugated with the chelating agent DOTA and radiolabeled with 64Cu. For the microPET imaging studies, SCID mice bearing PSMA-positive C4-2 and PSMA-negative DU 145 prostate cancer xenografts were used. Each animal received 20-30 microg radiolabeled mAb or fragment corresponding to an activity of 8-14 MBq. Imaging was performed 3, 24, and 48 hr post-injection. After the last scan, mice were sacrificed and tracer in vivo biodistribution was measured by gamma-counting. RESULTS: Static microPET images of mice with PSMA-positive tumors revealed a high uptake of the mAbs in the C4-2 tumors at 24 and 48 hr after tracer injection and only a minimal distribution in the DU 145 tumors and other organs. In contrast, the F(ab)(2) and Fab fragments of 3/A12 were detected at a high extend in the kidney but not in the C4-2 tumors. These results were confirmed by gamma counting of dissected organs after the final imaging. CONCLUSIONS: Due to the high and specific uptake of the 64Cu-labeled mAbs in PSMA-positive tumors, these antibodies represent excellent tools for prostate cancer imaging.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/inmunología , Trasplante Heterólogo/inmunología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta Inmunológica , Masculino , Ratones , Tomografía de Emisión de Positrones , Próstata/inmunología , Distribución Tisular/inmunologíaRESUMEN
The efficiency of serotonergic signal transduction is controlled by the density of serotonegic synapses and by the activity of the serotonin transporter (SERT), which selectively clears the synaptic cleft of the neurotransmitter. SERT is located in axons, where it is concentrated in varicosities and terminal boutons and thus is an exquisite marker for serotonergic synapses. This finding has been taken advantage of for neuroimaging serotonergic synaptic contact sites. Previous positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies were often carried out using radioligands that bind with high affinity to SERTs in the brainstem but also exhibit high affinity for dopamine and norepinephrine transporters and therefore did not allow quantification of serotonergic innervations in brain regions also containing dopaminergic or noradrenergic terminals. In order to visualize SERT availability more selectively, in recent years new tracers have been developed, one of which is [11C]DASB (N,N-dimethyl-2-2-amino-4-cyanophenylthiobenzylamine). Here, we have performed a detailed pharmacological characterization of unlabelled as well as radioactive DASB on recombinant human monoamine transporter proteins. Our results show that DASB selectively binds to SERT with high affinity (KD = 3.5 nm) to a site distinct from the serotonin (5-HT) recognition/translocation site. 5-HT inhibits DASB binding to SERT with more than one order of magnitude lower affinity than that of DASB binding (IC50 = 82.4 nm). These findings suggest DASB to be a highly selective PET tracer to visualize the density of serotonergic synapses in human brain.