Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 30(3): 308-13, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23395778

RESUMEN

Hand-in-hand with the availability of full genome sequences for eukaryotic model organisms and humans the demand for analysis of gene function on a system level has grown. In a process called RNA interference (RNAi) specific mRNA species can be degraded by introduction of double-stranded small interfering RNAs (siRNAs) that are complementary to the targeted transcript sequence. This enables the selective impairment of gene function. During the past decade RNAi has been exploited in many different eukaryotic cell types and model organisms. Large-scale and eventually genome-wide RNAi screens ablating gene functions in a systematic manner have delivered an overwhelming amount of data on the requirement of distinct gene products for major cellular pathways. A large part of the RNAi field is dedicated to disease states such as cancer or infection with the prospect of discovering pathways suitable for new therapeutic interventions. Here some of the major steps in the development of the RNAi technology will be outlined and exemplified with a focus on the progress made in the field of mammalian host-pathogen interactions.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Interferencia de ARN , Biología de Sistemas , Animales , Humanos , ARN Interferente Pequeño/genética
2.
Cell Microbiol ; 14(8): 1166-73, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22519749

RESUMEN

The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment.


Asunto(s)
Infecciones por Bartonella/microbiología , Bartonella/fisiología , Animales , Vectores Artrópodos/microbiología , Adhesión Bacteriana , Endotelio/microbiología , Eritrocitos/microbiología , Interacciones Huésped-Patógeno , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...