Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36520493

RESUMEN

T cells typically recognize their ligands using a defined cell biology-the scanning of their membrane microvilli (MV) to palpate their environment-while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement.


Asunto(s)
Microvellosidades , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Linfocitos T , Microvellosidades/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Cadena Única/metabolismo , Humanos , Antígenos
2.
Proc Natl Acad Sci U S A ; 119(32): e2203247119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914144

RESUMEN

During immune surveillance, CD8 T cells scan the surface of antigen-presenting cells using dynamic microvillar palpation and movements as well as by having their receptors preconcentrated into patches. Here, we use real-time lattice light-sheet microscopy to demonstrate the independence of microvillar and membrane receptor patch scanning. While T cell receptor (TCR) patches can distribute to microvilli, they do so stochastically and not preferentially as for other receptors such as CD62L. The distinctness of TCR patch movement from microvillar movement extends to many other receptors that form patches that also scan independent of the TCR. An exception to this is the CD8 coreceptor which largely comigrates in patches that overlap with or are closely adjacent to those containing TCRs. Microvilli that assemble into a synapse contain various arrays of the engaged patches, notably of TCRs and the inhibitory receptor PD-1, creating a pastiche of occupancies that vary from microvillar contact to contact. In summary, this work demonstrates that localization of receptor patches within the membrane and on microvillar projections is random prior to antigen detection and that such random variation may play into the generation of many individually composed receptor patch compositions at a single synapse.


Asunto(s)
Células Presentadoras de Antígenos , Linfocitos T CD8-positivos , Microvellosidades , Receptores de Antígenos de Linfocitos T , Células Presentadoras de Antígenos/citología , Linfocitos T CD8-positivos/citología , Membrana Celular/metabolismo , Humanos , Vigilancia Inmunológica , Sinapsis Inmunológicas , Microvellosidades/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
3.
Nat Methods ; 17(8): 833-843, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32632238

RESUMEN

Spatial transcriptomics seeks to integrate single cell transcriptomic data within the three-dimensional space of multicellular biology. Current methods to correlate a cell's position with its transcriptome in living tissues have various limitations. We developed an approach, called 'ZipSeq', that uses patterned illumination and photocaged oligonucleotides to serially print barcodes ('zipcodes') onto live cells in intact tissues, in real time and with an on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in vitro wound healing, live lymph node sections and a live tumor microenvironment. In all cases, we discovered new gene expression patterns associated with histological structures. In the tumor microenvironment, this demonstrated a trajectory of myeloid and T cell differentiation from the periphery inward. A combinatorial variation of ZipSeq efficiently scales in the number of regions defined, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Animales , Biología Computacional , Regulación de la Expresión Génica , Ganglios Linfáticos , Ratones , Células 3T3 NIH , Linfocitos T , Microambiente Tumoral
4.
mBio ; 9(5)2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181245

RESUMEN

The assembly of virus particles is a crucial aspect of virus spread. For retroviruses, the Gag polyprotein is the key driver for virus particle assembly. In order to produce progeny virus, once Gag is translated, it must translocate from the location in the cytoplasm where it is synthesized to the plasma membrane and form an oligomeric lattice that results in Gag puncta. The biogenesis of mature Gag puncta can trigger the budding process, resulting in virus particle production. While some aspects of the dynamics of Gag oligomerization and particle biogenesis have been observed with human immunodeficiency virus type 1 (HIV-1), the process of Gag punctum biogenesis remains poorly understood, particularly for other retroviruses. Here, we have conducted the most detailed studies thus far on Gag punctum biogenesis for human T-cell leukemia virus type 1 (HTLV-1). Using mEos2 photoconvertible fluorescent proteins and total internal reflection fluorescence microscopy (TIRF), we have found that HTLV-1 Gag was recruited to Gag puncta primarily from the plasma membrane. This was in stark contrast to HIV-1 Gag, which was recruited from the cytoplasm. These observations imply fundamental differences among retroviruses regarding the orchestration of Gag punctum biogenesis, which has important general implications for enveloped virus particle assembly.IMPORTANCE This report describes the results of experiments examining the pathway by which the human retroviral Gag protein is recruited to sites along the inner leaflet of the plasma membrane where Gag punctum biogenesis occurs. In particular, clever and sensitive experimental methods were devised to image in living cells fluorescently labeled Gag protein derivatives from human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1) at the plasma membrane. The photoconvertible fluorescent protein mEos2 was strategically utilized, as the fluorescence emission of Gag at the plasma membrane could be differentiated from that of cytosolic Gag. This experimental strategy allowed for the determination of the Gag recruitment pathway into Gag puncta. For HTLV-1 Gag, puncta recruited Gag primarily from the plasma membrane, while HIV-1 Gag was recruited from the cytoplasm. These observations represent the first report of HTLV-1 particle biogenesis and its contrast to that of HIV-1. The observed differences in the Gag recruitment pathways used by HTLV-1 and HIV-1 Gag provide key information that is useful for informing the discovery of novel targets for antiretroviral therapies directed at eliminating virus infectivity and spread.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/fisiología , Multimerización de Proteína , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Membrana Celular/química , Genes Reporteros , Células HeLa , Humanos , Proteínas Luminiscentes/análisis , Microscopía Fluorescente , Coloración y Etiquetado
5.
Biochemistry ; 57(26): 3556-3559, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29792687

RESUMEN

We previously reported that recruitment of the type IIA phosphatidylinositol 4-kinase (PI4K2A) to autophagosomes by GABARAP, a member of the Atg8 family of autophagy-related proteins, is important for autophagosome-lysosome fusion. Because both PI4K2A and GABARAP have also been implicated in the intracellular trafficking of plasma membrane receptors in the secretory/endocytic pathway, we characterized their interaction in cells under nonautophagic conditions. Fluorescence fluctuation spectroscopy measurements revealed that GABARAP exists predominantly as a cytosolic monomer in live cells, but is recruited to small cytoplasmic vesicles upon overexpression of PI4K2A. C-Terminal lipidation of GABARAP, which is essential for its autophagic activities, is not necessary for its recruitment to these PI4K2A-containing transport vesicles. However, a GABARAP truncation mutant lacking C-terminal residues 103-117 fails to bind to PI4K2A, is not recruited to cytoplasmic vesicles, and does not codistribute with PI4K2A on subcellular organelles. These observations suggest that the PI4K2A-GABARAP interaction plays a role in membrane trafficking both under autophagic and nonautophagic conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Mapas de Interacción de Proteínas , Proteínas Reguladoras de la Apoptosis , Autofagia , Células HeLa , Humanos
6.
Biophys J ; 111(3): 565-576, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27508440

RESUMEN

Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Vesículas Citoplasmáticas/metabolismo , Animales , Caveolinas/metabolismo , Línea Celular , Dinamina III/metabolismo , Receptores ErbB/metabolismo , Humanos , Ligandos , Unión Proteica , Transporte de Proteínas , Ratas
7.
Sci Rep ; 4: 5756, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25056908

RESUMEN

Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvß3, but not in those by integrin α5ß1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.


Asunto(s)
Adhesiones Focales/enzimología , Animales , Técnicas Biosensibles , Adhesión Celular , Células Cultivadas , Activación Enzimática , Fibronectinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales/ultraestructura , Proteínas Luminiscentes/biosíntesis , Ratones , Microscopía Fluorescente , Factor de Crecimiento Derivado de Plaquetas/fisiología , Familia-src Quinasas/metabolismo , Proteína Fluorescente Roja
8.
Methods Mol Biol ; 1076: 97-112, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24108625

RESUMEN

Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.


Asunto(s)
Polarización de Fluorescencia/métodos , Fluorescencia , Espectrometría de Fluorescencia , Microscopía Fluorescente
9.
Methods ; 66(2): 256-67, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23871762

RESUMEN

Injuries and damage to tendons plague both human and equine athletes. At the site of injuries, various cells congregate to repair and re-structure the collagen. Treatments for collagen injury range from simple procedures such as icing and pharmaceutical treatments to more complex surgeries and the implantation of stem cells. Regardless of the treatment, the level of mechanical stimulation incurred by the recovering tendon is crucial. However, for a given tendon injury, it is not known precisely how much of a load should be applied for an effective recovery. Both too much and too little loading of the tendon could be detrimental during recovery. A mapping of the complex local environment imparted to any cell present at the site of a tendon injury may however, convey fundamental insights related to their decision making as a function of applied load. Therefore, fundamentally knowing how cells translate mechanical cues from their external environment into signals regulating their functions during repair is crucial to more effectively treat these types of injuries. In this paper, we studied systems of tendons with a variety of 2-photon-based imaging techniques to examine the local mechanical environment of cells in both normal and injured tendons. These tendons were chemically treated to instigate various extents of injury and in some cases, were injected with stem cells. The results related by each imaging technique distinguish with high contrast and resolution multiple morphologies of the cells' nuclei and the alignment of the collagen during injury. The incorporation of 2-photon FLIM into this study probed new features in the local environment of the nuclei that were not apparent with steady-state imaging. Overall, this paper focuses on horse tendon injury pattern and analysis with different 2-photon confocal modalities useful for wide variety of application in damaged tissues.


Asunto(s)
Tendones/patología , Animales , Rastreo Celular , Células Cultivadas , Colágeno/metabolismo , Análisis de Fourier , Caballos , Microscopía Confocal , Microscopía Fluorescente , Microscopía de Polarización , Trasplante de Células Madre , Células Madre/metabolismo , Tendinopatía/patología , Tendinopatía/terapia , Tendones/metabolismo
10.
J Fluoresc ; 21(4): 1763-77, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21519891

RESUMEN

Fluorescence lifetime-resolved imaging microscopy (FLIM) has been used to monitor the enzymatic activity of a proteolytic enzyme, Membrane Type 1 Matrix Metalloproteinase (MT1-MMP), with a recently developed FRET-based biosensor in vitro and in live HeLa and HT1080 cells. MT1-MMP is a collagenaise that is involved in the destruction of extra-cellular matrix (ECM) proteins, as well as in various cellular functions including migration. The increased expression of MT1-MMP has been positively correlated with the invasive potential of tumor cells. However, the precise spatiotemporal activation patterns of MT1-MMP in live cells are still not well-established. The activity of MT1-MMP was examined with our biosensor in live cells. Imaging of live cells was performed with full-field frequency-domain FLIM. Image analysis was carried out both with polar plots and phase differential enhancement. Phase differential enhancement, which is similar to phase suppression, is shown to facilitate the differentiation between different conformations of the MT1-MMP biosensor in live cells when the lifetime differences are small. FLIM carried out in differential enhancement or phase suppression modes, requires only two acquired phase images, and permits rapid imaging of the activity of MT1-MMP in live cells.


Asunto(s)
Técnicas Biosensibles , Metaloproteinasa 14 de la Matriz/metabolismo , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Metaloproteinasa 14 de la Matriz/química , Microscopía Fluorescente
11.
PLoS One ; 3(12): e4082, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19114999

RESUMEN

Genetically-encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to study the spatiotemporal regulation of molecular activity in live cells with high resolution. The efficient and accurate quantification of the large amount of imaging data from these single-cell FRET measurements demands robust and automated data analysis. However, the nonlinear movement of live cells presents tremendous challenge for this task. Based on image registration of the single-cell movement, we have developed automated image analysis methods to track and quantify the FRET signals within user-defined subcellular regions. In addition, the subcellular pixels were classified according to their associated FRET signals and the dynamics of the clusters analyzed. The results revealed that the EGF-induced reduction of RhoA activity in migratory HeLa cells is significantly less than that in stationary cells. Furthermore, the RhoA activity is polarized in the migratory cells, with the gradient of polarity oriented toward the opposite direction of cell migration. In contrast, there is a lack of consistent preference in RhoA polarity among stationary cells. Therefore, our image analysis methods can provide powerful tools for high-throughput and systematic investigation of the spatiotemporal molecular activities in regulating functions of live cells with their shapes and positions continuously changing in time.


Asunto(s)
Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...