Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 10(5): 1629-1637, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132166

RESUMEN

Epigenomic changes have been considered a potential missing link underlying phenotypic variation in quantitative traits but is potentially confounded with the underlying DNA sequence variation. Although the concept of epigenetic inheritance has been discussed in depth, there have been few studies attempting to directly dissect the amount of epigenomic variation within inbred natural populations while also accounting for genetic diversity. By using known genetic relationships between Brachypodium lines, multiple sets of nearly identical accession families were selected for phenotypic studies and DNA methylome profiling to investigate the dual role of (epi)genetics under simulated natural seasonal climate conditions. Despite reduced genetic diversity, appreciable phenotypic variation was still observable in the measured traits (height, leaf width and length, tiller count, flowering time, ear count) between as well as within the inbred accessions. However, with reduced genetic diversity there was diminished variation in DNA methylation within families. Mixed-effects linear modeling revealed large genetic differences between families and a minor contribution of DNA methylation variation on phenotypic variation in select traits. Taken together, this analysis suggests a limited but significant contribution of DNA methylation toward heritable phenotypic variation relative to genetic differences.


Asunto(s)
Brachypodium , Brachypodium/genética , Metilación de ADN , Epigénesis Genética , Epigenómica , Variación Genética , Genotipo , Humanos , Fenotipo
2.
G3 (Bethesda) ; 9(11): 3611-3621, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31484672

RESUMEN

Plants must continuously react to the ever-fluctuating nature of their environment. Repeated exposure to stressful conditions can lead to priming, whereby prior encounters heighten a plant's ability to respond to future events. A clear example of priming is provided by the model plant Arabidopsis thaliana (Arabidopsis), in which photosynthetic and photoprotective responses are enhanced following recurring light stress. While there are various post-translational mechanisms underpinning photoprotection, an unresolved question is the relative importance of transcriptional changes toward stress priming and, consequently, the potential contribution from DNA methylation - a heritable chemical modification of DNA capable of influencing gene expression. Here, we systematically investigate the potential molecular underpinnings of physiological priming against recurring excess-light (EL), specifically DNA methylation and transcriptional regulation: the latter having not been examined with respect to EL priming. The capacity for physiological priming of photosynthetic and photoprotective parameters following a recurring EL treatment was not impaired in Arabidopsis mutants with perturbed establishment, maintenance, or removal of DNA methylation. Importantly, no differences in development or basal photoprotective capacity were identified in the mutants that may confound the above result. Little evidence for a causal transcriptional component of physiological priming was identified; in fact, most alterations in primed plants presented as a transcriptional 'dampening' in response to an additional EL exposure, likely a consequence of physiological priming. However, a set of transcripts uniquely regulated in primed plants provide preliminary evidence for a novel transcriptional component of recurring EL priming, independent of physiological changes. Thus, we propose that physiological priming of recurring EL in Arabidopsis occurs independently of DNA methylation; and that the majority of the associated transcriptional alterations are a consequence, not cause, of this physiological priming.


Asunto(s)
Arabidopsis/efectos de la radiación , Metilación de ADN , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Estrés Fisiológico/genética
3.
BMC Bioinformatics ; 20(1): 253, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31096906

RESUMEN

BACKGROUND: The development of whole genome bisulfite sequencing has made it possible to identify methylation differences at single base resolution throughout an entire genome. However, a persistent challenge in DNA methylome analysis is the accurate identification of differentially methylated regions (DMRs) between samples. Sensitive and specific identification of DMRs among different conditions requires accurate and efficient algorithms, and while various tools have been developed to tackle this problem, they frequently suffer from inaccurate DMR boundary identification and high false positive rate. RESULTS: We present a novel Histogram Of MEthylation (HOME) based method that takes into account the inherent difference in the distribution of methylation levels between DMRs and non-DMRs to discriminate between the two using a Support Vector Machine. We show that generated features used by HOME are dataset-independent such that a classifier trained on, for example, a mouse methylome training set of regions of differentially accessible chromatin, can be applied to any other organism's dataset and identify accurate DMRs. We demonstrate that DMRs identified by HOME exhibit higher association with biologically relevant genes, processes, and regulatory events compared to the existing methods. Moreover, HOME provides additional functionalities lacking in most of the current DMR finders such as DMR identification in non-CG context and time series analysis. HOME is freely available at https://github.com/ListerLab/HOME . CONCLUSION: HOME produces more accurate DMRs than the current state-of-the-art methods on both simulated and biological datasets. The broad applicability of HOME to identify accurate DMRs in genomic data from any organism will have a significant impact upon expanding our knowledge of how DNA methylation dynamics affect cell development and differentiation.


Asunto(s)
Algoritmos , Metilación de ADN/genética , Aprendizaje Automático , Animales , Simulación por Computador , Bases de Datos Genéticas , Ratones , Anotación de Secuencia Molecular , Factores de Tiempo
4.
Plant Physiol ; 178(4): 1614-1630, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30301775

RESUMEN

In plants, the molecular function(s) of the nucleus-localized 5'-3' EXORIBONUCLEASES (XRNs) are unclear; however, their activity is reported to have a significant effect on gene expression and SAL1-mediated retrograde signaling. Using parallel analysis of RNA ends, we documented a dramatic increase in uncapped RNA substrates of the XRNs in both sal1 and xrn2xrn3 mutants. We found that a major consequence of reducing SAL1 or XRN activity was RNA Polymerase II 3' read-through. This occurred at 72% of expressed genes, demonstrating a major genome-wide role for the XRN-torpedo model of transcription termination in Arabidopsis (Arabidopsis thaliana). Read-through is speculated to have a negative effect on transcript abundance; however, we did not observe this. Rather, we identified a strong association between read-through and increased transcript abundance of tandemly orientated downstream genes, strongly correlated with the proximity (less than 1,000 bp) and expression of the upstream gene. We observed read-through in the proximity of 903 genes up-regulated in the sal1-8 retrograde signaling mutant; thus, this phenomenon may account directly for up to 23% of genes up-regulated in sal1-8 Using APX2 and AT5G43770 as exemplars, we genetically uncoupled read-through loci from downstream genes to validate the principle of read-through-mediated mRNA regulation, providing one mechanism by which an ostensibly posttranscriptional exoribonuclease that targets uncapped RNAs could modulate gene expression.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Monoéster Fosfórico Hidrolasas/genética , ARN Polimerasa II/metabolismo , Adenosina Difosfato/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
5.
Genome Biol ; 19(1): 122, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30134966

RESUMEN

The original version [1] of this article unfortunately contained a mistake. The additive effects of the eQTLs of lncRNAs were flipped, meaning that the base allele in the contrast to derive the additive effects should have been B73, rather than Mo17, due to the original coding of biallele SNPs as "0s" and "1s". Going through the entire analysis procedure, it was determined that the mistake was made while tabulating the eQTL results from QTL Cartographer.

6.
Plant Cell Environ ; 41(7): 1657-1672, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29707792

RESUMEN

The capacity for plant stress priming and memory and the notion of this being underpinned by DNA methylation-mediated memory is an appealing hypothesis for which there is mixed evidence. We previously established a lack of drought-induced methylome variation in Arabidopsis thaliana (Arabidopsis); however, this was tied to only minor observations of physiological memory. There are numerous independent observations demonstrating that photoprotective mechanisms, induced by excess-light stress, can lead to robust programmable changes in newly developing leaf tissues. Although key signalling molecules and transcription factors are known to promote this priming signal, an untested question is the potential involvement of chromatin marks towards the maintenance of light stress acclimation, or memory. Thus, we systematically tested our previous hypothesis of a stress-resistant methylome using a recurring excess-light stress, then analysing new, emerging, and existing tissues. The DNA methylome showed negligible stress-associated variation, with the vast majority attributable to stochastic differences. Yet, photoacclimation was evident through enhanced photosystem II performance in exposed tissues, and nonphotochemical quenching and fluorescence decline ratio showed evidence of mitotic transmission. Thus, we have observed physiological acclimation in new and emerging tissues in the absence of substantive DNA methylome changes.


Asunto(s)
Metilación de ADN/efectos de la radiación , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Clorofila/metabolismo , Genoma de Planta/genética , Luz , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Análisis de Secuencia de ADN , Estrés Fisiológico , Xantófilas/metabolismo
7.
Plant Physiol ; 175(4): 1893-1912, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28986422

RESUMEN

Improving the responsiveness, acclimation, and memory of plants to abiotic stress holds substantive potential for improving agriculture. An unresolved question is the involvement of chromatin marks in the memory of agriculturally relevant stresses. Such potential has spurred numerous investigations yielding both promising and conflicting results. Consequently, it remains unclear to what extent robust stress-induced DNA methylation variation can underpin stress memory. Using a slow-onset water deprivation treatment in Arabidopsis (Arabidopsis thaliana), we investigated the malleability of the DNA methylome to drought stress within a generation and under repeated drought stress over five successive generations. While drought-associated epi-alleles in the methylome were detected within a generation, they did not correlate with drought-responsive gene expression. Six traits were analyzed for transgenerational stress memory, and the descendants of drought-stressed lineages showed one case of memory in the form of increased seed dormancy, and that persisted one generation removed from stress. With respect to transgenerational drought stress, there were negligible conserved differentially methylated regions in drought-exposed lineages compared with unstressed lineages. Instead, the majority of observed variation was tied to stochastic or preexisting differences in the epigenome occurring at repetitive regions of the Arabidopsis genome. Furthermore, the experience of repeated drought stress was not observed to influence transgenerational epi-allele accumulation. Our findings demonstrate that, while transgenerational memory is observed in one of six traits examined, they are not associated with causative changes in the DNA methylome, which appears relatively impervious to drought stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Metilación de ADN , Regulación de la Expresión Génica de las Plantas/fisiología , Agua , Alelos , Proteínas de Arabidopsis/genética , ADN de Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Estrés Fisiológico
8.
Plant Cell ; 29(8): 1836-1863, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28705956

RESUMEN

Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.


Asunto(s)
Arabidopsis/genética , Arabidopsis/efectos de la radiación , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Luz , Estrés Fisiológico/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Sitios Genéticos , Semivida , Dinámicas no Lineales , Biosíntesis de Proteínas , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Estrés Fisiológico/efectos de la radiación , Factores de Tiempo , Transcripción Genética/efectos de la radiación , Transcriptoma/genética
9.
Elife ; 52016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27911260

RESUMEN

Variation in the presence or absence of transposable elements (TEs) is a major source of genetic variation between individuals. Here, we identified 23,095 TE presence/absence variants between 216 Arabidopsis accessions. Most TE variants were rare, and we find these rare variants associated with local extremes of gene expression and DNA methylation levels within the population. Of the common alleles identified, two thirds were not in linkage disequilibrium with nearby SNPs, implicating these variants as a source of novel genetic diversity. Many common TE variants were associated with significantly altered expression of nearby genes, and a major fraction of inter-accession DNA methylation differences were associated with nearby TE insertions. Overall, this demonstrates that TE variants are a rich source of genetic diversity that likely plays an important role in facilitating epigenomic and transcriptional differences between individuals, and indicates a strong genetic basis for epigenetic variation.


Asunto(s)
Arabidopsis/clasificación , Arabidopsis/genética , Metilación de ADN , Elementos Transponibles de ADN , Regulación de la Expresión Génica , Variación Genética , Genética de Población , Epigenómica
10.
Proc Natl Acad Sci U S A ; 113(44): E6895-E6902, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791153

RESUMEN

Hybrid Arabidopsis plants undergo epigenetic reprogramming producing decreased levels of 24-nt siRNAs and altered patterns of DNA methylation that can affect gene expression. Driving the changes in methylation are the processes trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). In TCM/TCdM the methylation state of one allele is altered to resemble the other allele. We show that Pol IV-dependent sRNAs are required to establish TCM events. The changes in DNA methylation and the associated changes in sRNA levels in the F1 hybrid can be maintained in subsequent generations and affect hundreds of regions in the F2 epigenome. The inheritance of these altered epigenetic states varies in F2 individuals, resulting in individuals with genetically identical loci displaying different epigenetic states and gene expression profiles. The change in methylation at these regions is associated with the presence of sRNAs. Loci without any sRNA activity can have altered methylation states, suggesting that a sRNA-independent mechanism may also contribute to the altered methylation state of the F1 and F2 generations.


Asunto(s)
Arabidopsis/genética , Cromosomas de las Plantas/genética , Metilación de ADN/genética , Nucleótidos/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Cruzamientos Genéticos , ADN de Plantas/genética , ADN de Plantas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Vigor Híbrido , Hibridación Genética , Patrón de Herencia/genética , ARN Interferente Pequeño/metabolismo , Autofecundación/genética , Factores de Tiempo
11.
Genome Res ; 26(11): 1520-1531, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27613611

RESUMEN

DNA methylation, a common modification of genomic DNA, is known to influence the expression of transposable elements as well as some genes. Although commonly viewed as an epigenetic mark, evidence has shown that underlying genetic variation, such as transposable element polymorphisms, often associate with differential DNA methylation states. To investigate the role of DNA methylation variation, transposable element polymorphism, and genomic diversity, whole-genome bisulfite sequencing was performed on genetically diverse lines of the model cereal Brachypodium distachyon Although DNA methylation profiles are broadly similar, thousands of differentially methylated regions are observed between lines. An analysis of novel transposable element indel variation highlighted hundreds of new polymorphisms not seen in the reference sequence. DNA methylation and transposable element variation is correlated with the genome-wide amount of genetic variation present between samples. However, there was minimal evidence that novel transposon insertions or deletions are associated with nearby differential methylation. This study highlights unique relationships between genetic variation and DNA methylation variation within Brachypodium and provides a valuable map of DNA methylation across diverse resequenced accessions of this model cereal species.


Asunto(s)
Brachypodium/genética , Metilación de ADN , Polimorfismo Genético , Elementos Transponibles de ADN/genética , Genoma de Planta , Mutación
12.
Sci Adv ; 2(2): e1501340, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26989783

RESUMEN

Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.


Asunto(s)
Fenómenos Fisiológicos de las Plantas/genética , Epigénesis Genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Modelos Biológicos , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Estrés Fisiológico
13.
Front Plant Sci ; 6: 308, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25999972

RESUMEN

DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays), seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.

14.
Plant Physiol ; 168(4): 1262-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25869653

RESUMEN

DNA methylation is a stable modification of chromatin that can contribute to epigenetic variation through the regulation of genes or transposons. Profiling of DNA methylation in five maize (Zea mays) inbred lines found that while DNA methylation levels for more than 99% of the analyzed genomic regions are similar, there are still 5,000 to 20,000 context-specific differentially methylated regions (DMRs) between any two genotypes. The analysis of identical-by-state genomic regions that have limited genetic variation provided evidence that DMRs can occur without local sequence variation, but they are less common than in regions with genetic variation. Characterization of the sequence specificity of DMRs, location of DMRs relative to genes and transposons, and patterns of DNA methylation in regions flanking DMRs reveals a distinct subset of DMRs. Transcriptome profiling of the same tissue revealed that only approximately 20% of genes with qualitative (on-off) differences in gene expression are associated with DMRs, and there is little evidence for association of DMRs with genes that show quantitative differences in gene expression. We also identify a set of genes that may represent cryptic information that is silenced by DNA methylation in the reference B73 genome. Many of these genes exhibit natural variation in other genotypes, suggesting the potential for selection to act upon existing epigenetic natural variation. This study provides insights into the origin and influences of DMRs in a crop species with a complex genome organization.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Variación Genética , Genoma de Planta/genética , Zea mays/genética , Cruzamiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo
15.
Nucleic Acids Res ; 43(12): e81, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25813045

RESUMEN

We present a capture-based approach for bisulfite-converted DNA that allows interrogation of pre-defined genomic locations, allowing quantitative and qualitative assessments of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CG dinucleotides and in non-CG contexts (CHG, CHH) in mammalian and plant genomes. We show the technique works robustly and reproducibly using as little as 500 ng of starting DNA, with results correlating well with whole genome bisulfite sequencing data, and demonstrate that human DNA can be tested in samples contaminated with microbial DNA. This targeting approach will allow cell type-specific designs to maximize the value of 5mC and 5hmC sequencing.


Asunto(s)
5-Metilcitosina/análisis , Citosina/análogos & derivados , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Animales , Línea Celular , Citosina/análisis , Metilación de ADN , Genómica/métodos , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Sulfitos
16.
Plant Cell ; 26(12): 4602-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25527708

RESUMEN

DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Alelos , Cruzamientos Genéticos , ADN (Citosina-5-)-Metiltransferasas/genética , Epigenómica , Genes de Plantas , Mutación
17.
PLoS One ; 9(8): e105267, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25122127

RESUMEN

DNA methylation and dimethylation of lysine 9 of histone H3 (H3K9me2) are two chromatin modifications that can be associated with gene expression or recombination rate. The maize genome provides a complex landscape of interspersed genes and transposons. The genome-wide distribution of DNA methylation and H3K9me2 were investigated in seedling tissue for the maize inbred B73 and compared to patterns of these modifications observed in Arabidopsis thaliana. Most maize transposons are highly enriched for DNA methylation in CG and CHG contexts and for H3K9me2. In contrast to findings in Arabidopsis, maize CHH levels in transposons are generally low but some sub-families of transposons are enriched for CHH methylation and these families exhibit low levels of H3K9me2. The profile of modifications over genes reveals that DNA methylation and H3K9me2 is quite low near the beginning and end of genes. Although elevated CG and CHG methylation are found within gene bodies, CHH and H3K9me2 remain low. Maize has much higher levels of CHG methylation within gene bodies than observed in Arabidopsis and this is partially attributable to the presence of transposons within introns for some maize genes. These transposons are associated with high levels of CHG methylation and H3K9me2 but do not appear to prevent transcriptional elongation. Although the general trend is for a strong depletion of H3K9me2 and CHG near the transcription start site there are some putative genes that have high levels of these chromatin modifications. This study provides a clear view of the relationship between DNA methylation and H3K9me2 in the maize genome and how the distribution of these modifications is shaped by the interplay of genes and transposons.


Asunto(s)
Metilación de ADN , Genoma de Planta , Histonas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Elementos Transponibles de ADN , Epigénesis Genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción
18.
Genetics ; 198(1): 209-18, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25023398

RESUMEN

Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Zea mays/genética , Células Cultivadas , Genoma de Planta , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Semillas/citología , Semillas/metabolismo
19.
Genetics ; 198(1): 409-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25037958

RESUMEN

Grain produced from cereal crops is a primary source of human food and animal feed worldwide. To understand the genetic basis of seed-size variation, a grain yield component, we conducted a genome-wide scan to detect evidence of selection in the maize Krug Yellow Dent long-term divergent seed-size selection experiment. Previous studies have documented significant phenotypic divergence between the populations. Allele frequency estimates for ∼3 million single nucleotide polymorphisms (SNPs) in the base population and selected populations were estimated from pooled whole-genome resequencing of 48 individuals per population. Using FST values across sliding windows, 94 divergent regions with a median of six genes per region were identified. Additionally, 2729 SNPs that reached fixation in both selected populations with opposing fixed alleles were identified, many of which clustered in two regions of the genome. Copy-number variation was highly prevalent between the selected populations, with 532 total regions identified on the basis of read-depth variation and comparative genome hybridization. Regions important for seed weight in natural variation were identified in the maize nested association mapping population. However, the number of regions that overlapped with the long-term selection experiment did not exceed that expected by chance, possibly indicating unique sources of variation between the two populations. The results of this study provide insights into the genetic elements underlying seed-size variation in maize and could also have applications for other cereal crops.


Asunto(s)
Semillas/genética , Selección Genética , Zea mays/genética , Variaciones en el Número de Copia de ADN , Frecuencia de los Genes , Genoma de Planta , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Semillas/anatomía & histología , Zea mays/crecimiento & desarrollo
20.
Plant Physiol ; 165(3): 933-947, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24872382

RESUMEN

Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA