Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 87(15): 3492-501, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19565653

RESUMEN

Formation of the paranodal axoglial junction (PNJ) requires the presence of three cell adhesion molecules: the 155-kDa isoform of neurofascin (NF155) on the glial membrane and a complex of Caspr and contactin found on the axolemma. Here we report that the clustering of Caspr along myelinated axons during development differs fundamentally between the central (CNS) and peripheral (PNS) nervous systems. In cultures of Schwann cells (SC) and dorsal root ganglion (DRG) neurons, membrane accumulation of Caspr was detected only after myelination. In contrast, in oligodendrocytes (OL)/DRG neurons cocultures, Caspr was clustered upon initial glial cell contact already before myelination had begun. Premyelination clustering of Caspr was detected in cultures of oligodendrocytes and retinal ganglion cells, motor neurons, and DRG neurons as well as in mixed cell cultures of rat forebrain and spinal cords. Cocultures of oligodendrocyte precursor cells isolated from contactin- or neurofascin-deficient mice with wild-type DRG neurons showed that clustering of Caspr at initial contact sites between OL processes and the axon requires glial expression of NF155 but not of contactin. These results demonstrate that the expression of membrane proteins along the axolemma is determined by the type of the contacting glial cells and is not an intrinsic characteristic of the axon.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Ganglios Espinales/metabolismo , Oligodendroglía/metabolismo , Células de Schwann/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/ultraestructura , Moléculas de Adhesión Celular Neuronal/genética , Comunicación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Ganglios Espinales/citología , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/ultraestructura , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/ultraestructura , Oligodendroglía/citología , Prosencéfalo/metabolismo , Prosencéfalo/ultraestructura , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/ultraestructura , Ratas , Ratas Wistar , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células de Schwann/citología , Células Receptoras Sensoriales/citología , Médula Espinal/metabolismo , Médula Espinal/ultraestructura
2.
Neuron Glia Biol ; 2(1): 27-38, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16721426

RESUMEN

The development and maintenance of myelinated nerves in the PNS requires constant and reciprocal communication between Schwann cells and their associated axons. However, little is known about the nature of the cell-surface molecules that mediate axon-glial interactions at the onset of myelination and during maintenance of the myelin sheath in the adult. Based on the rationale that such molecules contain a signal sequence in order to be presented on the cell surface, we have employed a eukaryotic-based, signal-sequence-trap approach to identify novel secreted and membrane-bound molecules that are expressed in myelinating and non-myelinating Schwann cells. Using cDNA libraries derived from dbcAMP-stimulated primary Schwann cells and 3-day-old rat sciatic nerve mRNAs, we generated an extensive list of novel molecules expressed in myelinating nerves in the PNS. Many of the identified proteins are cell-adhesion molecules (CAMs) and extracellular matrix (ECM) components, most of which have not been described previously in Schwann cells. In addition, we have identified several signaling receptors, growth and differentiation factors, ecto-enzymes and proteins that are associated with the endoplasmic reticulum and the Golgi network. We further examined the expression of several of the novel molecules in Schwann cells in culture and in rat sciatic nerve by primer-specific, real-time PCR and in situ hybridization. Our results indicate that myelinating Schwann cells express a battery of novel CAMs that might mediate their interactions with the underlying axons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA