Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612761

RESUMEN

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Asunto(s)
Acetilcisteína/análogos & derivados , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Animales , Ratas , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , alfa-Sinucleína/genética , Chaperón BiP del Retículo Endoplásmico , Administración Intranasal , Neuroprotección
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338949

RESUMEN

The water-selective channel aquaporin-4 (AQP4) is implicated in water homeostasis and the functioning of the glymphatic system, which eliminates various metabolites from the brain tissue, including amyloidogenic proteins. Misfolding of the α-synuclein protein and its post-translational modifications play a crucial role in the development of Parkinson's disease (PD) and other synucleopathies, leading to the formation of cytotoxic oligomers and aggregates that cause neurodegeneration. Human and animal studies have shown an interconnection between AQP4 dysfunction and α-synuclein accumulation; however, the specific role of AQP4 in these mechanisms remains unclear. This review summarizes the current knowledge on the role of AQP4 dysfunction in the progression of α-synuclein pathology, considering the possible effects of AQP4 dysregulation on brain molecular mechanisms that can impact α-synuclein modification, accumulation and aggregation. It also highlights future directions that can help study the role of AQP4 in the functioning of the protective mechanisms of the brain during the development of PD and other neurodegenerative diseases.


Asunto(s)
Acuaporina 4 , Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , alfa-Sinucleína/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/metabolismo , Agua/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35457282

RESUMEN

The molecular mechanisms of sleep cycle integration at the beginning and the end of the inactive period are not clear. Sleep cycles with a predominance of deep slow-wave sleep (SWS) seem to be associated with accelerated protein synthesis in the brain. The inducible Hsp70 chaperone corrects protein conformational changes and has protective properties. This research explores (1) whether the Hspa1 gene encoding Hsp70 protein activates during the daily rapid-eye-movement sleep (REMS) maximum, and (2) whether a lower daily deep SWS maximum affects the Hspa1 expression level during the subsequent REMS. Combining polysomnography in male Wistar rats, RT-qPCR, and Western blotting, we reveal a three-fold Hspa1 upregulation in the nucleus reticularis pontis oralis, which regulates REMS. Hspa1 expression increases during the daily REMS maximum, 5-7 h after the natural peak of deep SWS. Using short-term selective REMS deprivation, we demonstrate that REMS rebound after deprivation exceeds the natural daily maximum, but it is not accompanied by Hspa1 upregulation. The results suggest that a high proportion of deep SWS, usually observed after sleep onset, is a necessary condition for Hspa1 upregulation during subsequent REMS. The data obtained can inform the understanding of the molecular mechanisms integrating SWS and REMS and key biological function(s) of sleep.


Asunto(s)
Electroencefalografía , Proteínas HSP70 de Choque Térmico , Sueño , Animales , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Chaperonas Moleculares , Ratas , Ratas Wistar , Sueño/genética , Privación de Sueño/genética , Privación de Sueño/metabolismo , Sueño REM
4.
Exp Neurol ; 306: 199-208, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29704482

RESUMEN

Molecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals. Conversely, pharmacological activation of HSF1 transcription factor and enhanced expression of inducible HSP70 with the echinochrome derivative, U-133, reverses the process of neurodegeneration, as evidenced by а increase in the number of tyrosine hydroxylase-containing neurons, and prevents the motor disturbances that are typical of the clinical stage of the disease. The neuroprotective effect caused by the elevation of HSP70 in nigral neurons is due to the ability of the chaperone to prevent α-synuclein aggregation and microglia activation. Our findings support the therapeutic relevance of HSP70 induction for the prevention and/or deceleration of PD-like neurodegeneration.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Cetirizina/uso terapéutico , Factores de Transcripción del Choque Térmico/agonistas , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Técnicas de Silenciamiento del Gen , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Masculino , Microglía/efectos de los fármacos , Degeneración Nerviosa/genética , Enfermedad de Parkinson/psicología , Desempeño Psicomotor , Ratas , Ratas Wistar
5.
J Neurochem ; 115(4): 1035-44, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20831598

RESUMEN

Heat shock protein 70 kDa (Hsp70) possesses a remarkable neuroprotective activity and the results of recent studies demonstrated its efficacy in the attenuation of epileptic seizures. The aim of this study was to explore the effects of a pure Hsp70/Hsc70 preparation delivered to the brain regions involved in generalized seizures induced in rats by intracerebroventricular microinjections of NMDA or systemic injections of pentylenetetrazole. Purified Hsp70/Hsc70 was administered (intracerebroventricular) 2 h before the induction of seizures. Compared to the vehicle-treated control animals, Hsp70/Hsc70-pretreated rats demonstrated reduced severity of NMDA- and pentylenetetrazole-induced seizures. To identify the brain structures potentially implicated in the Hsp70/Hsc70-mediated anticonvulsant effect, we analysed the localization of a fluorescently-labelled chaperone in the brain. Labelled Hsp70/Hsc70 was found in neurons and terminals of the limbic seizure complex of the brain and was co-localized in these regions with NMDA receptors, synaptophysin and the GABA-synthesizing enzyme, L-glutamic acid decarboxylase 67. An immunoprecipitation assay confirmed interactions between Hsp70 and both synaptophysin and L-glutamic acid decarboxylase 67 in brain tissue. We suggest that the anticonvulsant effect of exogenous Hsp70/Hsc70 is not only based on its protective capacity but is also related to its ability to modulate GABA neurotransmission, which in turn contributes to the maintenance of the excitatory-inhibitory balance of the CNS.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Choque Térmico HSC70/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Convulsiones/metabolismo , Convulsiones/prevención & control , Animales , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Bovinos , Proteínas del Choque Térmico HSC70/uso terapéutico , Proteínas HSP70 de Choque Térmico/uso terapéutico , Humanos , Masculino , N-Metilaspartato/toxicidad , Pentilenotetrazol/toxicidad , Estudios Prospectivos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA