Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Evolution ; 77(3): 789-800, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36626803

RESUMEN

In seasonal environments, competition among males can drive males to emerge before females. Females, simultaneously, should avoid emerging at times after sufficient male availability. We show that the consequent sexual conflict over timing traits can produce arms races toward ever earlier emergence, if low mate-search efficiency or sperm limitation elevate the latter risk for females. In reality, however, arms races over timing cannot proceed indefinitely as this ignores the relevant ecological context for phenology: the temporal niche of resource availability for offspring development. We model the interaction of natural and sexual selection to predict the sexual conflict load, i.e., the loss of population fitness caused by sexual conflict. We show that selection to avoid matelessness can exacerbate another problem of maladaptation: a temporal mismatch between the organism (e.g., insect) and its resource (e.g., host plant). Load frequently associates with protandry if males can mate multiply, yet lack of multiple mating does not imply zero load. A temporal mismatch can still evolve, where both sexes emerge and mate suboptimally early with respect to the seasonal resource peak, because monogamy does not guarantee that every individual finds one mate, and selection favors early individuals in mate-finding contexts.


Asunto(s)
Procesos de Determinación del Sexo , Conducta Sexual Animal , Humanos , Femenino , Animales , Masculino , Semen , Conducta Sexual , Reproducción
2.
Proc Natl Acad Sci U S A ; 115(45): 11561-11566, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30282740

RESUMEN

In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a "tug of war" over maternal provisioning or repeated "recognition-avoidance" coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations of Dalechampia scandens (Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.


Asunto(s)
Euphorbiaceae/genética , Flujo Génico , Patrón de Herencia , Semillas/genética , Quimera , Cruzamientos Genéticos , Euphorbiaceae/anatomía & histología , Aptitud Genética , Fitomejoramiento , Semillas/anatomía & histología
3.
Am J Bot ; 103(3): 522-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26451034

RESUMEN

PREMISE OF THE STUDY: Competition among pollen grains from a single donor is expected to increase the quality of the offspring produced because of the recessive deleterious alleles expressed during pollen-tube growth. However, evidence for such an effect is inconclusive; a large number of studies suffer from confounding variation in pollen competition with variation in pollen load. METHODS: In this study, we tested the effect of pollen competition on offspring performance independently of pollen-load variation. We compared seed mass and early seedling performance in Dalechampia scandens (Euphorbiaceae) between crosses in which variation in pollen competition was achieved, without variation in pollen load, by manipulating the dispersion of pollen grains on the stigmas. KEY RESULTS: Despite a large sample size (211 crosses on 20 maternal plants), we failed to find an effect of pollen competition on seed characteristics or early seedling performance. Paternal effects were always limited, and pollen competition never reduced the within-father (residual) variance. CONCLUSION: These results suggest that limited within-donor variation in genetic quality of pollen grains reduces the potential benefits of pollen competition in the study population. The lack of paternal effects on early sporophyte performance further suggests that benefits of pollen competition among pollen from multiple donors should be limited as well, and it raises questions about the significance of pollen competition as a mechanism of sexual selection.


Asunto(s)
Euphorbiaceae/fisiología , Polen/fisiología , Evolución Biológica , Cotiledón/fisiología , Germinación , Modelos Biológicos , Tamaño de los Órganos , Semillas/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA