Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(3): 1413-1422, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38293692

RESUMEN

The addition of a lateral alkyl chain is a well-known strategy to reduce π-stacked ensembles of molecules in solution, with the intention to minimize the interactions between the molecules' backbones. In this paper, we study whether this concept generalizes to single-molecule junctions by using a combination of mechanically controllable break junction (MCBJ) measurements and clustering-based data analysis with two small series of model compounds decorated with various bulky groups. The systematic study suggests that introducing alkyl side chains also favors the formation of electrode-molecule configurations that are not observed in their absence, thereby inducing broadening of the conductance peak in the one-dimensional histograms. Thus, the introduction of alkyl chains in aromatic compounds for molecular electronics must be carefully designed and optimized for the specific purpose, balancing between increased solubility and the possibility of additional junction configurations.

2.
Nanoscale ; 13(5): 3002-3009, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33508063

RESUMEN

We report on charge transport across single short peptides using the Mechanically Controlled Break Junction (MCBJ) method. We record thousands of electron transport events across single-molecule junctions and with an unsupervised machine learning algorithm, we identify several classes of traces with multifarious conductance values that may correspond to different peptide conformations. Data analysis shows that very short peptides, which are more rigid, show conductance plateaus at low conductance values of about 10-3G0 and below, with G0 being the conductance quantum, whereas slightly longer, more flexible peptides also show plateaus at higher values. Fully stretched peptide chains exhibit conductance values that are of the same order as that of alkane chains of similar length. The measurements show that in the case of short peptides, different compositions and molecular lengths offer a wide range of junction conformations. Such information is crucial to understand mechanism(s) of charge transport in and across peptide-based biomolecules.


Asunto(s)
Nanotecnología , Péptidos , Alcanos , Transporte de Electrón , Conformación Molecular
3.
J Org Chem ; 85(23): 15072-15081, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33166468

RESUMEN

Porphyrin cyclophane 1, consisting of two rigidly fixed but still movable cofacial porphyrins and exposing acetate-masked thiols in opposed directions of the macrocycle, is designed, synthesized, and characterized. The functional cyclophane 1, as pioneer of mechanosensitive 3D materials, forms stable single-molecule junctions in a mechanically controlled break-junction setup. Its reliable integration in a single-molecule junction is a fundamental prerequisite to explore the potential of these structures as mechanically triggered functional units and devices.

4.
J Phys Chem C Nanomater Interfaces ; 124(41): 22776-22783, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33093933

RESUMEN

This paper describes the conductance of single-molecules and self-assembled monolayers comprising an oligophenyleneethynylene core, functionalized with acenes of increasing length that extend conjugation perpendicular to the path of tunneling electrons. In the Mechanically Controlled Break Junction (MCBJ) experiment, multiple conductance plateaus were identified. The high conductance plateau, which we attribute to the single molecule conformation, shows an increase of conductance as a function of acene length, in good agreement with theoretical predictions. The lower plateau is attributed to multiple molecules bridging the junctions with intermolecular interactions playing a role. In junctions comprising a self-assembled monolayer with eutectic Ga-In top-contacts (EGaIn), the pentacene derivative exhibits unusually low conductance, which we ascribe to the inability of these molecules to pack in a monolayer without introducing significant intermolecular contacts. This hypothesis is supported by the MCBJ data and theoretical calculations showing suppressed conductance through the PC films. These results highlight the role of intermolecular effects and junction geometries in the observed fluctuations of conductance values between single-molecule and ensemble junctions, and the importance of studying molecules in both platforms.

5.
ACS Nano ; 14(5): 5754-5762, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32223259

RESUMEN

Graphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices.

6.
Adv Mater ; 32(12): e1906054, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32048409

RESUMEN

Graphene nanoribbons (GNRs) have attracted much interest due to their largely modifiable electronic properties. Manifestation of these properties requires atomically precise GNRs which can be achieved through a bottom-up synthesis approach. This has recently been applied to the synthesis of width-modulated GNRs hosting topological electronic quantum phases, with valence electronic properties that are well captured by the Su-Schrieffer-Heeger (SSH) model describing a 1D chain of interacting dimers. Here, ultralow bandgap GNRs with charge carriers behaving as massive Dirac fermions can be realized when their valence electrons represent an SSH chain close to the topological phase boundary, i.e., when the intra- and interdimer coupling become approximately equal. Such a system has been achieved via on-surface synthesis based on readily available pyrene-based precursors and the resulting GNRs are characterized by scanning probe methods. The pyrene-based GNRs (pGNRs) can be processed under ambient conditions and incorporated as the active material in a field effect transistor. A quasi-metallic transport behavior is observed at room temperature, whereas at low temperature, the pGNRs behave as quantum dots showing single-electron tunneling and Coulomb blockade. This study may enable the realization of devices based on carbon nanomaterials with exotic quantum properties.

7.
Chem Sci ; 10(36): 8299-8305, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31803408

RESUMEN

Porphyrin derivatives are key components in natural machinery enabling us to store sunlight as chemical energy. In spite of their prominent role in cascades separating electrical charges and their potential as sensitizers in molecular devices, reports concerning their electronic transport characteristics are inconsistent. Here we report a systematic investigation of electronic transport paths through single porphyrin junctions. The transport through seven structurally related porphyrin derivatives was repeatedly measured in an automatized mechanically controlled break-junction set-up and the recorded data were analyzed by an unsupervised clustering algorithm. The correlation between the appearances of similar clusters in particular sub-sets of the porphyrins with a common structural motif allowed us to assign the corresponding current path. The small series of model porphyrins allowed us to identify and distinguish three different electronic paths covering more than four orders of magnitude in conductance.

8.
Nat Nanotechnol ; 14(10): 957-961, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527843

RESUMEN

One of the main challenges to upscale the fabrication of molecular devices is to achieve a mechanically stable device with reproducible and controllable electronic features that operates at room temperature1,2. This is crucial because structural and electronic fluctuations can lead to significant changes in the transport characteristics at the electrode-molecule interface3,4. In this study, we report on the realization of a mechanically and electronically robust graphene-based molecular junction. Robustness was achieved by separating the requirements for mechanical and electronic stability at the molecular level. Mechanical stability was obtained by anchoring molecules directly to the substrate, rather than to graphene electrodes, using a silanization reaction. Electronic stability was achieved by adjusting the π-π orbitals overlap of the conjugated head groups between neighbouring molecules. The molecular devices exhibited stable current-voltage (I-V) characteristics up to bias voltages of 2.0 V with reproducible transport features in the temperature range from 20 to 300 K.

9.
Nanoscale ; 10(38): 18169-18177, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30255912

RESUMEN

We analyse the electrical response of narrow graphene nanogaps in search for transport signatures stemming from spin-polarized edge states. We find that the electrical transport across graphene nanogaps having perfectly defined zigzag edges does not carry any spin-related signature. We also analyse the magnetic and electrical properties of nanogaps whose electrodes have wedges that possibly occur in the currently fabricated nanogaps. These wedges can host spin polarized wedge low-energy states due to the bipartite nature of the graphene lattice. We find that these spin-polarized low-energy modes give rise to low-voltage signatures in the differential conductance and to distinctive features in the stability diagrams. These are caused by fully spin-polarized currents.

10.
Nanoscale ; 9(44): 17312-17317, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29091090

RESUMEN

We report on the characterization of the electrical breakdown (EB) process for the formation of tunneling nanogaps in single-layer graphene. In particular, we investigated the role of oxygen in the breakdown process by varying the environmental conditions (vacuum and ambient conditions). We show that the density of oxygen molecules in the chamber is a crucial parameter that defines the physical breakdown process: at low density, the graphene lattice is sublimating, whereas at high density, the process involved is oxidation, independent of the substrate material. To estimate the activation energies of the two processes, we use a scheme which consists of applying voltage pulses across the junction during the breakdown. By systematically varying the voltage pulse length, and estimating the junction temperature from a 1D thermal model, we extract activation energies which are consistent with the sublimation of graphene under high vacuum and the electroburning process under air. Our study demonstrates that, in our system, a better control of the gap formation is achieved in the sublimation regime.

11.
Nano Lett ; 17(11): 6783-6789, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28984461

RESUMEN

The resistive switching behavior in SiOx-based phase change memory devices confined by few nanometer wide graphene nanogaps is investigated. Our experiments and analysis reveal that the switching dynamics is not only determined by the commonly observed bias voltage dependent set and reset times. We demonstrate that an internal time scale, the dead time, plays a fundamental role in the system's response to various driving signals. We associate the switching behavior with the formation of microscopically distinct SiOx amorphous and crystalline phases between the graphene electrodes. The reset transition is attributed to an amorphization process due to a voltage driven self-heating; it can be triggered at any time by appropriate voltage levels. In contrast, the formation of the crystalline ON state is conditional and only occurs after the completion of a thermally assisted structural rearrangement of the as-quenched OFF state which takes place within the dead time after a reset operation. Our results demonstrate the technological relevance of the dead time rule which enables a zero bias access of both the low and high resistance states of a phase change memory device by unipolar voltage pulses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...