RESUMEN
Auranofin (Ridaura®, AUF) is a gold complex originally approved as an antirheumatic agent that has emerged as a potential candidate for multiple repurposed therapies. The best-studied anticancer mechanism of AUF is the inhibition of thioredoxin reductase (TrxR). However, a number of reports indicate a more complex and multifaceted mode of action for AUF that could be cancer cell type- and dose-dependent. In this study, we observed that AUF displayed variable cytotoxicity in five triple-negative breast cancer cell lines. Using representative MDA-MB-231 cells treated with moderate and cytotoxic doses of AUF, we evidenced that an AUF-mediated TrxR inhibition alone may not be sufficient to induce cell death. Cytotoxic doses of AUF elicited rapid and drastic intracellular oxidative stress affecting the mitochondria, cytoplasm and nucleus. A "redoxome" proteomics investigation revealed that a short treatment with a cytotoxic dose AUF altered the redox state of a number of cysteines-containing proteins, pointing out that the cell proliferation/cell division/cell cycle and cell-cell adhesion/cytoskeleton structure were the mostly affected pathways. Experimentally, AUF treatment triggered a dose-dependent S-phase arrest and a rapid disintegration of the actin cytoskeleton structure. Our study shows a new spectrum of AUF-induced early effects and should provide novel insights into the complex redox-based mechanisms of this promising anticancer molecule.
RESUMEN
The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.
Asunto(s)
Desoxirribonucleótidos/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Auranofina/farmacología , Secuencia de Bases , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Hidroxiurea/farmacología , Límite de Detección , Prueba de Estudio Conceptual , Ribonucleótido Reductasas/antagonistas & inhibidores , Sensibilidad y Especificidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidoresRESUMEN
Vitamin C (VitC) possesses pro-oxidant properties at high pharmacologic concentrations which favor repurposing VitC as an anti-cancer therapeutic agent. However, redox-based anticancer properties of VitC are yet partially understood. We examined the difference between the reduced and oxidized forms of VitC, ascorbic acid (AA) and dehydroascorbic acid (DHA), in terms of cytotoxicity and redox mechanisms toward breast cancer cells. Our data showed that AA displayed higher cytotoxicity towards triple-negative breast cancer (TNBC) cell lines in vitro than DHA. AA exhibited a similar cytotoxicity on non-TNBC cells, while only a minor detrimental effect on noncancerous cells. Using MDA-MB-231, a representative TNBC cell line, we observed that AA- and DHA-induced cytotoxicity were linked to cellular redox-state alterations. Hydrogen peroxide (H2O2) accumulation in the extracellular medium and in different intracellular compartments, and to a lesser degree, intracellular glutathione oxidation, played a key role in AA-induced cytotoxicity. In contrast, DHA affected glutathione oxidation and had less cytotoxicity. A "redoxome" approach revealed that AA treatment altered the redox state of key antioxidants and a number of cysteine-containing proteins including many nucleic acid binding proteins and proteins involved in RNA and DNA metabolisms and in energetic processes. We showed that cell cycle arrest and translation inhibition were associated with AA-induced cytotoxicity. Finally, bioinformatics analysis and biological experiments identified that peroxiredoxin 1 (PRDX1) expression levels correlated with AA differential cytotoxicity in breast cancer cells, suggesting a potential predictive value of PRDX1. This study provides insight into the redox-based mechanisms of VitC anticancer activity, indicating that pharmacologic doses of VitC and VitC-based rational drug combinations could be novel therapeutic opportunities for triple-negative breast cancer.
Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cisteína , Oxidación-Reducción/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Antioxidantes/química , Puntos de Control del Ciclo Celular/genética , Línea Celular , Biología Computacional/métodos , Cisteína/química , Células Endoteliales/metabolismo , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxirredoxinas , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer's disease, Parkinson's disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.
Asunto(s)
Estrés Oxidativo , Agregación Patológica de Proteínas/metabolismo , Proteínas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades por Prión/metabolismo , Agregado de ProteínasRESUMEN
BACKGROUND: Cancer cells from different origins exhibit various basal redox statuses and thus respond differently to intrinsic or extrinsic oxidative stress. These intricate characteristics condition the success of redox-based anticancer therapies that capitalize on the ability of reactive oxygen species to achieve selective and efficient cancer cell killing. METHODS: Redox biology methods, stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, and bioinformatics pattern comparisons were used to decipher the underlying mechanisms for differential response of lung and breast cancer cell models to redox-modulating molecule auranofin (AUF) and to combinations of AUF and vitamin C (VC). The in vivo effect of AUF, VC, and two AUF/VC combinations on mice bearing MDA-MB-231 xenografts (n = 5 mice per group) was also evaluated. All statistical tests were two-sided. RESULTS: AUF targeted simultaneously the thioredoxin and glutathione antioxidant systems. AUF/VC combinations exerted a synergistic and hydrogen peroxide (H2O2)-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer potential of AUF/VC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects. On day 14 of treatments, mean (SD) tumor volumes for the vehicle-treated control group and the two AUF/VC combination-treated groups (A/V1 and A/V2) were 197.67 (24.28) mm3, 15.66 (10.90) mm3, and 10.23 (7.30)mm3, respectively; adjusted P values of the differences between mean tumor volumes of vehicle vs A/V1 groups and vehicle vs A/V2 groups were both less than .001. SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell sensitivity to AUF/VC combinations. CONCLUSION: The combination of AUF and VC, two commonly available drugs, could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties and PTGR1 expression levels. The redox-based anticancer activity of this combination and the discriminatory potential of PTGR1 expression are worth further assessment in preclinical and clinical studies.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Células A549 , Animales , Ácido Ascórbico/administración & dosificación , Auranofina/administración & dosificación , Línea Celular Tumoral , Femenino , Glutatión/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Proteoma/metabolismo , Distribución Aleatoria , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Cancer cells from different origins exhibit various basal redox statuses and thus respond differently to intrinsic or extrinsic oxidative stress. These intricate characteristics condition the success of redox-based anticancer therapies that capitalize on the ability of reactive oxygen species to achieve selective and efficient cancer cell killing. METHODS: Redox biology methods, stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, and bioinformatics pattern comparisons were used to decipher the underlying mechanisms for differential response of lung and breast cancer cell models to redox-modulating molecule auranofin (AUF) and to combinations of AUF and vitamin C (VC). The in vivo effect of AUF, VC, and two AUF/VC combinations on mice bearing MDA-MB-231 xenografts (n = 5 mice per group) was also evaluated. All statistical tests were two-sided. RESULTS: AUF targeted simultaneously the thioredoxin and glutathione antioxidant systems. AUF/VC combinations exerted a synergistic and hydrogen peroxide (H2O2)-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer potential of AUF/VC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects. On day 14 of treatments, mean (SD) tumor volumes for the vehicle-treated control group and the two AUF/VC combination-treated groups (A/V1 and A/V2) were 197.67 (24.28) mm3, 15.66 (10.90) mm3, and 10.23 (7.30)mm3, respectively; adjusted P values of the differences between mean tumor volumes of vehicle vs A/V1 groups and vehicle vs A/V2 groups were both less than .001. SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell sensitivity to AUF/VC combinations. CONCLUSION: The combination of AUF and VC, two commonly available drugs, could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties and PTGR1 expression levels. The redox-based anticancer activity of this combination and the discriminatory potential of PTGR1 expression are worth further assessment in preclinical and clinical studies.
RESUMEN
SIGNIFICANCE: Glutathione is the most abundant antioxidant molecule in living organisms and has multiple functions. Intracellular glutathione homeostasis, through its synthesis, consumption, and degradation, is an intricately balanced process. Glutathione levels are often high in tumor cells before treatment, and there is a strong correlation between elevated levels of intracellular glutathione/sustained glutathione-mediated redox activity and resistance to pro-oxidant anticancer therapy. Recent Advances: Ample evidence demonstrates that glutathione and glutathione-based systems are particularly relevant in cancer initiation, progression, and the development of anticancer drug resistance. CRITICAL ISSUES: This review highlights the multifaceted roles of glutathione and glutathione-based systems in carcinogenesis, anticancer drug resistance, and clinical applications. FUTURE DIRECTIONS: The evidence summarized here underscores the important role played by glutathione and the glutathione-based systems in carcinogenesis and anticancer drug resistance. Future studies should address mechanistic questions regarding the distinct roles of glutathione in different stages of cancer development and cancer cell death. It will be important to study how metabolic alterations in cancer cells can influence glutathione homeostasis. Sensitive approaches to monitor glutathione dynamics in subcellular compartments will be an indispensible step. Therapeutic perspectives should focus on mechanism-based rational drug combinations that are directed against multiple redox targets using effective, specific, and clinically safe inhibitors. This new strategy is expected to produce a synergistic effect, prevent drug resistance, and diminish doses of single drugs. Antioxid. Redox Signal. 27, 1217-1234.
Asunto(s)
Resistencia a Antineoplásicos , Glutatión/metabolismo , Neoplasias/metabolismo , Animales , Progresión de la Enfermedad , Redes Reguladoras de Genes , Humanos , Metástasis de la Neoplasia , Neoplasias/genética , Oxidación-ReducciónRESUMEN
Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily altered in vivo by different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS) or reactive oxygen species (ROS). In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development.
Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Animales , Cobre/química , Cobre/metabolismo , Humanos , Hierro/química , Proteínas Hierro-Azufre/química , Terapia Molecular Dirigida , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Azufre/químicaRESUMEN
Phospholipid quantification in biological samples is crucial and is increasingly studied in lipidomics. Quantitative studies are often performed using commercially available standards of phospholipid classes in order to mimic the composition of biological samples. For this, studies are conducted by liquid chromatography coupled to electrospray ionization-mass spectrometry. In liquid chromatography coupled to mass spectrometry (LC-MS) analysis, the matrix components and the co-elution of several phospholipid species lead to the phenomenon of ion suppression. As a result, a decrease in the response of phospholipid species in mass spectrometry MS is observed. In fact, inter-species ion suppression affects the efficiency of phospholipid (PL) ionization and might also influence the quantitative results. The aim of this work is to study the PL inter-species ion suppression phenomenon in electrospray ionization (ESI)-mass spectrometry on a triple quadrupole TQ and an LTQ-Orbitrap in order to improve quantification in natural and biological samples. Thus, the phospholipid MS response was evaluated to study the effect of acyl chain length, the degree, and the position of unsaturation on acyl chain and the effect of the polar head group structure. A number of saturated and unsaturated phospholipid species and mixtures were analyzed in different ionization modes to a better understanding of inter-species ion suppression phenomenon. PL molecular species responded differently according to the length of fatty acid chains, the number of unsaturation, and the nature of the polar head group. Fatty acid chain length showed to have the most marked effect on MS response.