Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 415: 110635, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38432055

RESUMEN

Biopreservation is an approach consisting of using microorganisms as protective cultures and/or their metabolites to optimize the microbiological quality and shelf life of food by ensuring safety or reducing food waste. Biopreservation strain selection pipelines mainly focus on inhibition strength to identify strains of interest. However, in addition to inhibition strength, inhibition activity must be able to be expressed despite significant variations in food matrix properties. In this study, the anti-Listeria monocytogenes EGDelux properties of a collection of 77 Carnobacterium maltaromaticum strains were investigated by high throughput competition assays under varying conditions of co-culture inoculation level, time interval between inoculation with C. maltaromaticum and L. monocytogenes, pH, and NaCl, resulting in 1309 different combinations of C. maltaromaticum strains and culture conditions. This screening led to the selection of two candidate strains with potent and robust anti-L. monocytogenes activities. Deferred growth inhibition assays followed by halo measurements, and liquid co-culture followed by colony counting, revealed that these two strains exhibit a wide anti-Listeria spectrum. Challenge tests in Camembert and Saint-Nectaire cheese revealed both strains were able to inhibit a cocktail of five strains of L. monocytogenes with high potency and high reproducibility. These results highlight the importance of including the robustness criterion in addition to potency when designing a strain selection process for biopreservation applications.


Asunto(s)
Carnobacterium , Queso , Listeria monocytogenes , Eliminación de Residuos , Queso/microbiología , Reproducibilidad de los Resultados , Microbiología de Alimentos
2.
Front Microbiol ; 9: 1883, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174662

RESUMEN

This article describes a method for high-throughput competition assays using a bioluminescent strain of L. monocytogenes. This method is based on the use of the luminescent indicator strain L. monocytogenes EGDelux. The luminescence of this strain is correlated to growth, which make it suitable to monitor the growth of L. monocytogenes in mixed cultures. To this aim, luminescence kinetics were converted into a single numerical value, called the Luminescence Disturbance Indicator (LDI), which takes into account growth inhibition phenomena resulting in latency increase, decrease in the luminescence rate, or reduction of the maximum luminescence. The LDI allows to automatically and simultaneously handle multiple competition assays which are required for high-throughput screening (HTS) approaches. The method was applied to screen a collection of 1810 strains isolated from raw cow's milk in order to identify non-acidifying strains with anti-L. monocytogenes bioprotection properties. This method was also successfully used to identify anti-L. monocytogenes candidates within a collection of Lactococcus piscium, a species where antagonism was previously described as non-diffusible and requiring cell-to-cell contact. In conclusion, bioluminescent L. monocytogenes can be used in HTS to identify strains with anti-L. monocytogenes bioprotection properties, irrespectively of the inhibition mechanism.

3.
Int J Food Microbiol ; 226: 1-4, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26998709

RESUMEN

Carnobacterium maltaromaticum is a Lactic Acid Bacterium (LAB) of technological interest for the food industry, especially the dairy as bioprotection and ripening flora. The industrial use of this LAB requires accurate and resolutive typing tools. A new typing method for C. maltaromaticum inspired from MLVA analysis and called Repeat-based Sequence Typing (RST) is described. Rather than electrophoresis analysis, our RST method is based on sequence analysis of multiple loci containing Variable-Number Tandem-Repeats (VNTRs). The method described here for C. maltaromaticum relies on the analysis of three VNTR loci, and was applied to a collection of 24 strains. For each strain, a PCR product corresponding to the amplification of each VNTR loci was sequenced. Sequence analysis allowed delineating 11, 11, and 12 alleles for loci VNTR-A, VNTR-B, and VNTR-C, respectively. Considering the allele combination exhibited by each strain allowed defining 15 genotypes, ending in a discriminatory index of 0.94. Comparison with MLST revealed that both methods were complementary for strain typing in C. maltaromaticum.


Asunto(s)
Carnobacterium/clasificación , Carnobacterium/genética , Microbiología de Alimentos , Alelos , Variación Genética , Genotipo , Repeticiones de Minisatélite/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA