Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(32): 21852-21860, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37475757

RESUMEN

Titanium dioxide (TiO2) thin films were deposited on glass substrates at 350 °C using the spray pyrolysis technique. As deposited and annealed thin films were characterized by X-ray diffraction, scanning electron microscopy, UV-VIS spectroscopy, and photodetection. Unlike the as deposited samples which were amorphous, annealed samples show an anatase phase. Films were absorbent in the UV region and the band gap energy decreases from 3.78 eV to 3.4 eV with annealing. The photoresponse of TiO2 photodetectors was recorded under UV (λ1 = 365 nm, λ2 = 254 nm) and visible light illumination by reversible switching (ON/OFF) cycles using DC electrical characterization. Photosensitive properties such as reproducible photosensitivity, responsivity, and detectivity were also studied.

2.
RSC Adv ; 13(30): 20651-20662, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435386

RESUMEN

This work reports on the integration of ZnO pellets for use as a virtual sensor array (VSA) of volatile organic compounds (VOCs). ZnO pellets consist of nano-powder prepared using a sol-gel technique. The microstructure of the obtained samples was characterized by XRD and TEM methods. The response to VOCs at different concentrations was measured over a range of operating temperatures (250-450 °C) using DC electrical characterization. The ZnO based sensor showed a good response towards ethanol, methanol, isopropanol, acetone and toluene vapors. We note that the highest sensitivity (0.26 ppm-1) is obtained with ethanol while the lowest one (0.041 ppm-1) corresponds to methanol. Consequently, the limit of detection (LOD) estimated analytically reached 0.3 ppm for ethanol and 2.0 ppm for methanol at an operating temperature of 450 °C. The sensing mechanism of the ZnO semiconductor was developed on the basis of the reaction between the reducing VOCs with the chemisorbed oxygen. We verify through the Barsan model that mainly O- ions in the layer react with VOC vapor. Furthermore, dynamic response was investigated to construct mathematical features with distinctly different values for each vapor. Basic linear discrimination analysis (LDA) shows a good job of separating two groups by combining features. In the same way we have shown an original reason embodying the distinction between more than two volatile compounds. With relevant features and VSA formalism, the sensor is clearly selective towards individual VOCs.

3.
Nanotechnology ; 30(5): 055502, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30517085

RESUMEN

Ternary nanocomposites made of γ-iron oxide and aluminum-doped zinc oxide (γ-Fe2O3/Al-ZnO NCs), with different metal oxides ratio (0%-100%) were prepared through a solvothermal sol-gel process. The synthesized materials were characterized by x-ray diffraction, UV-vis spectroscopy, photoluminescence (PL), scanning electron microscope and BET analysis. Characterization results demonstrated that the ternary γ-Fe2O3/Al-ZnO NCs are mainly constituted by γ-Fe2O3 and Al-ZnO individual phases, while structural and physical properties like surface area, pore size, optical band gap, PL and electrical conductivity were deeply affected by the composition of nanocomposite. The synthesized γ-Fe2O3/Al-ZnO NCs were employed to prepare conductometric gas sensors, then their sensing performances toward acetone were also investigated. Results revealed enhanced sensing performance of nanocomposites than both pure γ-Fe2O3 and Al-ZnO phases. In particular, the γ-Fe2O3(33%)/Al-ZnO based gas sensor showed the best sensing properties, like a high response of R air/R gas = 29, a short response time of 3 s, in addition to an improved selectivity toward acetone versus ethanol at an operating temperature of 200 °C. Overall, ternary γ-Fe2O3/Al-ZnO NCs appear to be promising for the development of conductometric acetone sensors.

4.
Phys Chem Chem Phys ; 18(31): 21331-9, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27427175

RESUMEN

Nanoparticle-based cancer diagnosis-therapy integrative systems (cancer theranostics) represent an emerging approach in oncology. To address this issue in the present work iron oxide (γ-Fe2O3-maghemite) nanoparticles (IONPs) were encapsulated within the matrix of (bis(p-sulfonatophenyl)phenylphosphine)-methoxypolyethylene glycol-thiol (mPEG) polymer vesicles using a two-step process for active chemotherapeutic cargo loading in cancer theranostics. This formation method gives simple access to highly reactive surface groups present on IONPs together with good control over the vesicle size (50-100 nm). The simultaneous loading of a chemotherapeutic drug cargo (doxorubicin) and its in vitro release in cancer cells was achieved. The feasibility of controlled drug release under different pH conditions was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of stimulated drug delivery for magneto-chemotherapy. These polymer-magnetic nanocargoes (PMNCs) exhibit enhanced contrast properties that open potential applications for magnetic resonance imaging. These self-assembled magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias/diagnóstico , Neoplasias/terapia , Animales , Portadores de Fármacos , Compuestos Férricos , Humanos , Imagen por Resonancia Magnética
5.
Water Sci Technol ; 72(6): 974-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26360758

RESUMEN

Four partial carbonized nanoporous resins (PCNRs), based on organic xerogel compounds, were synthesised by the sol-gel method from pyrogallol and formaldehyde mixtures in water using picric acid as catalyst. The PCNRs were prepared at different pyrolysis temperatures: T(1) = 200 °C (PF-200), T(2) = 300 °C (PF-300), T(3) = 400 °C (PF-400), or T(4) = 500 °C (PF-500). The PCNRs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and nitrogen porosimetry. The obtained results show that PF-200 is more efficient for the removal of Pb(2+) from aqueous solution than the other adsorbent prepared in this study. The characteristics of lead uptake by PF-200 were explored using well-established and effective parameters including pH, contact time, initial metal ion concentration and temperature. Optimum adsorption of Pb(2+), using PF-200, was observed at pH 4.5. The Langmuir model gave a better fit than the other models, and kinetic studies revealed that the adsorption was well fitted by the pseudo second-order kinetic model and thermodynamic properties, i.e., Gibbs free energy change, enthalpy change and entropy change, showed that adsorption of Pb(2+) onto PF-200 was endothermic, spontaneous and feasible in the temperature range of 298-328 K.


Asunto(s)
Nanoestructuras/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Cinética , Microscopía Electrónica de Rastreo , Temperatura , Termodinámica , Agua , Difracción de Rayos X
6.
Hum Exp Toxicol ; 33(11): 1150-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24501101

RESUMEN

The aim of this study was to assess the potential subacute toxicity of zinc oxide (ZnO) nanoparticles (NPs) in Wistar rats in comparison with reference toxicant, zinc chloride (ZnCl2), of a non-nanoparticulate form. We therefore studied the relationships between zinc (Zn) accumulation, liver and kidney trace element levels, and plasmatic biochemical parameters. Rats in all groups were treated by intraperitoneal injection of ZnO NPs and/or ZnCl2 solution (25 mg/kg) every other day for 10 days. The contents of trace element in the liver and kidney were slightly modulated after ZnO NPs and/or ZnCl2 solution exposure. The same treatment increased the aspartate aminotransferase activity and uric acid concentration. However, ZnO NPs or ZnCl2 solution decreased the creatinine levels, whereas the combined intake of ZnO NPs and ZnCl2 decreased the glucose concentration. Interestingly, the analysis of the lyophilized powder of liver using the x-ray diffractometer showed the degradation of ZnO NPs in ZnO-treated group, instead there is a lack of NPs ZnO biosynthesis from the ZnCl2 solution injected in rats. These investigations suggest that combined injection of ZnO NPs and ZnCl2 solution has a possible toxic effect in rats. This effect could be related to Zn(2+) ion release and accumulation of this element in organs. Our findings provide crucial information that ZnO appeared to be absorbed in the organs in an ionic form rather than in a particulate form.


Asunto(s)
Cloruros/toxicidad , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Nanopartículas/toxicidad , Compuestos de Zinc/toxicidad , Óxido de Zinc/toxicidad , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Glucemia/análisis , Cloruros/farmacocinética , Creatinina/sangre , Riñón/metabolismo , Hígado/metabolismo , Masculino , Metales/metabolismo , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Ratas Wistar , Ácido Úrico/sangre , Difracción de Rayos X , Compuestos de Zinc/farmacocinética , Óxido de Zinc/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...