Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2311500121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916999

RESUMEN

Proteins mediate their functions through chemical interactions; modeling these interactions, which are typically through sidechains, is an important need in protein design. However, constructing an all-atom generative model requires an appropriate scheme for managing the jointly continuous and discrete nature of proteins encoded in the structure and sequence. We describe an all-atom diffusion model of protein structure, Protpardelle, which represents all sidechain states at once as a "superposition" state; superpositions defining a protein are collapsed into individual residue types and conformations during sample generation. When combined with sequence design methods, our model is able to codesign all-atom protein structure and sequence. Generated proteins are of good quality under the typical quality, diversity, and novelty metrics, and sidechains reproduce the chemical features and behavior of natural proteins. Finally, we explore the potential of our model to conduct all-atom protein design and scaffold functional motifs in a backbone- and rotamer-free way.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas , Proteínas/química , Secuencia de Aminoácidos
2.
Protein Sci ; 31(10): e4422, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173173

RESUMEN

Singular value decomposition (SVD) of multiple sequence alignments (MSAs) is an important and rigorous method to identify subgroups of sequences within the MSA, and to extract consensus and covariance sequence features that define the alignment and distinguish the subgroups. This information can be correlated to structure, function, stability, and taxonomy. However, the mathematics of SVD is unfamiliar to many in the field of protein science. Here, we attempt to present an intuitive yet comprehensive description of SVD analysis of MSAs. We begin by describing the underlying mathematics of SVD in a way that is both rigorous and accessible. Next, we use SVD to analyze sequences generated with a simplified model in which the extent of sequence conservation and covariance between different positions is controlled, to show how conservation and covariance produce features in the decomposed coordinate system. We then use SVD to analyze alignments of two protein families, the homeodomain and the Ras superfamilies. Both families show clear evidence of sequence clustering when projected into singular value space. We use k-means clustering to group MSA sequences into specific clusters, show how the residues that distinguish these clusters can be identified, and show how these clusters can be related to taxonomy and function. We end by providing a description a set of Python scripts that can be used for SVD analysis of MSAs, displaying results, and identifying and analyzing sequence clusters. These scripts are freely available on GitHub.


Asunto(s)
Algoritmos , Proteínas , Secuencia de Aminoácidos , Análisis por Conglomerados , Proteínas/química , Proteínas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...