Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Lab Chip ; 24(18): 4264-4274, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39162210

RESUMEN

The spread of metastatic cancer cells poses a significant challenge in cancer treatment, making innovative approaches for early detection and diagnosis essential. Dielectrophoretic impedance spectroscopy (DEPIS), a powerful tool for cell analysis, combines dielectrophoresis (DEP) and impedance spectroscopy (IS) to separate, sort, cells and analyze their dielectric properties. In this study, we developed and built out-of-plane inkjet-printed castellated arrays to map the dielectric properties of MDA-MB-231 breast cancer cell subtypes across their metastatic potential. This was realized via modulating the expression of connexin 43 (Cx43), a marker associated with poor breast cancer prognosis and increased metastasis. We employed DEP-based trapping, followed by EIS measurements on bulk cell population, for rapid capture and differentiation of the cancer cells according to their metastatic state. Our results revealed a significant correlation between the various MDA-MB-231 metastatic subtypes and their respective dielectrophoretic and dielectric properties. Notably, cells with the highest metastatic potential exhibited the highest membrane capacitance 16.88 ± 3.24 mF m-2, followed by the less metastatic cell subtypes with membrane capacitances below 14.3 ± 2.54 mF m-2. In addition, highly metastatic cells exhibited lower crossover frequency (25 ± 1 kHz) compared to the less metastatic subtypes (≥27 ± 1 kHz), an important characteristic for cell sorting. Finally, EIS measurements showed distinct double layer capacitance (CDL) values at 1 kHz between the metastatic subgroups, confirming unique dielectric and dielectrophoretic properties correlated with the metastatic state of the cell. Our findings underscore the potential of DEPIS as a non-invasive and rapid analytical tool, offering insights into cancer biology and facilitating the development of personalized therapeutic interventions tailored to distinct metastatic stages.


Asunto(s)
Neoplasias de la Mama , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Electroforesis/instrumentación , Metástasis de la Neoplasia , Espectroscopía Dieléctrica/instrumentación , Conexina 43/metabolismo
2.
Mol Pharm ; 21(9): 4664-4672, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39133897

RESUMEN

The blood-brain barrier (BBB) poses a significant challenge for drug delivery and is linked to various neurovascular disorders. In vitro BBB models provide a tool to investigate drug permeation across the BBB and the barrier's response to external injury events. Yet, existing models lack fidelity in replicating the BBB's complexity, hindering a comprehensive understanding of its functions. This study introduces a three-dimensional (3D) model using polyethylene glycol (PEG) hydrogels modified with biomimetic peptides that represent recognition sequences of key proteins in the brain. Hydrogels were functionalized with recognition sequences for laminin (IKVAV) and fibronectin peptides (RGD) and chemically cross-linked with matrix metalloprotease-sensitive peptides (MMPs) to mimic the extracellular matrix of the BBB. Astrocytes and endothelial cells were seeded within and on the surface of the hydrogels, respectively. The barrier integrity was assessed through different tests including transendothelial electrical resistance (TEER), the permeability of sodium fluorescence (Na-F), the permeability of Evan's blue bound to albumin (EBA), and the expression of zonula occluden-1 (ZO-1) in seeded endothelial cells. Hydrogels with a combination of RGD and IKVAV peptides displayed superior performance, exhibiting significantly higher TEER values (55.33 ± 1.47 Ω·cm2) at day 5 compared to other 2D controls including HAECs-monoculture and HAECs-cocultured with NHAs seeded on well inserts and 3D controls including RGD hydrogel and RGD-IKVAV monoculture with HAECs and RGD hydrogel cocultured with HAECs and NHAs. The designed 3D system resulted in the lowest Evan's blue permeability at 120 min (0.215 ± 0.055 µg/mL) compared to controls. ZO-1 expression was significantly higher and formed a relatively larger network in the functionalized hydrogel cocultured with astrocytes and endothelial cells compared to the controls. Thus, the designed 3D model effectively recapitulates the main BBB structure and function in vitro and is expected to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Técnicas de Cocultivo , Células Endoteliales , Hidrogeles , Péptidos , Polietilenglicoles , Barrera Hematoencefálica/metabolismo , Astrocitos/metabolismo , Polietilenglicoles/química , Células Endoteliales/metabolismo , Técnicas de Cocultivo/métodos , Hidrogeles/química , Péptidos/química , Humanos , Oligopéptidos/química , Fibronectinas/química , Fibronectinas/metabolismo , Laminina/química , Animales , Biomimética/métodos , Materiales Biomiméticos/química , Células Cultivadas
3.
Artículo en Inglés | MEDLINE | ID: mdl-39105773

RESUMEN

The interplay between cancer cell physical characteristics and metastatic potential highlights the significance of cancer cell mechanobiology. Using fluidic-based single-cell force spectroscopy (SCFS), quartz crystal microbalance with dissipation (QCM-D), and a model of cells with a spectrum of metastatic potential, we track the progression of biomechanics across the metastatic states by measuring cell-substrate and cell-to-cell adhesion forces, cell spring constant, cell height, and cell viscoelasticity. Compared to highly metastatic cells, cells in the lower spectrum of metastatic ability are found to be systematically stiffer, less viscoelastic, and larger. These mechanical transformations in cells within a cluster correlate with cells' metastatic potential but are significantly absent in single cells. Additionally, the response to chemotherapy is found to be highly dependent on cell viscoelastic properties in terms of both response time and magnitude. Shifts in cell softness and elasticity might serve as mechanoadaptive mechanisms during cancer cell metastasis, contributing to our understanding of metastasis and the effectiveness of potential therapeutic interventions.

4.
Biomedicines ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927503

RESUMEN

Toxoplasma gondii is the etiologic agent of toxoplasmosis, a highly prevalent parasitosis. Toxoplasma gondii (T. gondii) transits in the brain from acute (AT) to chronic toxoplasmosis (CT), under host immune control. In immunocompromised patients, reactivation of CT is potentially life-threatening. Behavioral and neurological complications have been associated with CT. Furthermore, an effective treatment targeting CT is still lacking. We previously reported the efficacy of imiquimod against CT. Here, we demonstrate the molecular effects of imiquimod or imiquimod followed by the clinically used combination of sulfadiazine and pyrimethamine (SDZ + PYR) on CT-associated behavior in a rat model. Imiquimod decreased the number of cysts in the brains of chronically infected rats due to an induced reactivation of bradyzoites into tachyzoites. Importantly, this decrease was more pronounced in rats treated with imiquimod followed by SDZ + PYR. Rats chronically infected with T. gondii exhibited an anxiety-like behavior. Notably, treatment with imiquimod reversed this behavior aberrancy, with even a more pronounced effect with imiquimod followed by SDZ/PYR. Similarly, rats chronically infected with T. gondii exhibited learning deficits, and imiquimod alone or followed by SDZ/PYR reversed this behavior. Our results enhance our knowledge of the implications of CT on behavioral aberrancies and highlight the potency of imiquimod followed by SDZ + PYR on these CT-associated complications.

5.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38583183

RESUMEN

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Asunto(s)
Ácido Ascórbico , Neoplasias Colorrectales , Humanos , Células CACO-2 , Ácido Ascórbico/farmacología , Cuerpos Nucleares de la Leucemia Promielocítica , Metilación de ADN , Cuerpos Nucleares , Vitaminas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38083716

RESUMEN

Cancer invasiveness significantly impacts cellular mechanical properties which regulate cell motility and, subsequently, cell metastatic potential. Understanding the adhesion forces and stiffness/rigidity of cancer cells can provide better insights into their mechanical adaptability related to their degree of invasiveness. Here, we used single-cell force spectroscopy in conjunction with quartz crystal microbalance-with dissipation measurements to compare the mechanical properties of mammary epithelial cancer cells with different metastatic potentials, namely MCF-7 (non-invasive) and MDA-MB-231 (aggressive and highly invasive). Our results showed that MCF-7 exhibits larger adhesion forces, stronger intercellular forces, and a considerably stiff/rigid phenotype, contrary to MDA-MB-231. The biomechanical properties obtained are associated with the malignant potential of these cells such that the forces of adhesion and viscoelasticity are inversely proportional to cell invasiveness. This study integrates a new quantitative tool with real-time measurements to provide better insights into the mechanics of cancer cells across metastatic stages.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Movimiento Celular , Fenómenos Mecánicos
7.
World J Gastroenterol ; 29(9): 1395-1426, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36998426

RESUMEN

Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Factor A de Crecimiento Endotelial Vascular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Antineoplásicos/uso terapéutico , Pronóstico , Terapia Molecular Dirigida , Receptor ErbB-2 , Metástasis de la Neoplasia/tratamiento farmacológico
8.
Nicotine Tob Res ; 25(7): 1361-1368, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36943313

RESUMEN

BACKGROUND: To reduce the harmful health effects of combustible cigarette smoke (CS), some (CS) users attempt to substitute CS with electronic cigarettes (ECIG) and/or heated tobacco products (HTP). In this animal study, we evaluated the acute effects of substituting CS consumption with ECIG or HTP thus mimicking the dual users' approach, on the lungs of a mouse model. METHODS: C57BL/6 mice were divided into Control, ECIG, HTP, CS, ECIG + CS, HTP + CS, and HTP + ECIG groups. Animals were exposed for 3 hours in AM and PM sessions to either air, CS, ECIG, or HTP for seven days. Lung injury was assessed by: wet to dry (W/D) ratio, albumin concentration in bronchoalveolar lavage fluid, expression of IL-1ß, IL-6, and TNF-α, histopathology examination, reactive oxygen species (ROS) production, and assessment of cellular apoptosis. RESULTS: W/D ratio was significantly increased in mice exposed to CS only. Albumin leak and expression of IL-1ß, IL-6, and TNF-a were elevated in CS, ECIG + CS, and HTP + CS. Histological examination revealed significant inflammatory cells infiltration, as well as collagen deposit in CS, ECIG + CS, HTP + CS. ROS production was significantly increased in CS, ECIG + CS, HTP + CS. Finally, cell death was also significantly increased in CS, ECIG + CS, and HTP + CS. CONCLUSION: In this animal model, substituting 50% of daily CS exposure by either ECIG or HTP exposure did not result in significant attenuation of acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Contaminación por Humo de Tabaco , Ratones , Animales , Especies Reactivas de Oxígeno , Interleucina-6 , Ratones Endogámicos C57BL , Productos de Tabaco/efectos adversos , Modelos Animales de Enfermedad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Albúminas
9.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769280

RESUMEN

Gap-junction-forming connexins are exquisitely regulated by post-translational modifications (PTMs). In particular, the PTM of connexin 43 (Cx43), a tumor suppressor protein, regulates its turnover and activity. Here, we investigated the interaction of Cx43 with the ubiquitin-related modifier 1 (URM-1) protein and its impact on tumor progression in two breast cancer cell lines, highly metastatic triple-negative MDA-MB-231 and luminal breast cancer MCF-7 cell lines. To evaluate the subsequent modulation of Cx43 levels, URM-1 was downregulated in these cells. The transcriptional levels of epithelial-to-mesenchymal transition (EMT) markers and the metastatic phenotype were assessed. We demonstrated that Cx43 co-localizes and interacts with URM-1, and URMylated Cx43 was accentuated upon cellular stress. The significant upregulation of small ubiquitin-like modifier-1 (SUMO-1) was also observed. In cells with downregulated URM-1, Cx43 expression significantly decreased, and SUMOylation by SUMO-1 was affected. The concomitant expression of EMT markers increased, leading to increased proliferation, migration, and invasion potential. Inversely, the upregulation of URM-1 increased Cx43 expression and reversed EMT-induced processes, underpinning a role for this PTM in the observed phenotypes. This study proposes that the URMylation of Cx43 in breast cancer cells regulates its tumor suppression properties and contributes to breast cancer cell malignancy.


Asunto(s)
Neoplasias de la Mama , Conexina 43 , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Uniones Comunicantes/metabolismo , Células MCF-7 , Ubiquitina/metabolismo
10.
Stem Cell Rev Rep ; 19(4): 853-865, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36633783

RESUMEN

Polycystic ovary syndrome (PCOS) is a pathological condition prevalent among women of reproductive age: it is associated with varied etiological factors (lifestyle, genetic, environmental…) and characterized by an increased polycystic morphology of the ovaries leading to disturbances in the menstrual cycle and its correlated infertility. Interconnections between PCOS, obesity, and insulin resistance have been recently investigated thoroughly in the scientific community; these findings directed PCOS therapies into unraveling possibilities to target insulin resistance and central adiposity as efficient treatment. On the other hand, brown adipose tissue is known to possess a thermogenic activity that increases lipolysis and directly attenuates fat deposition. Therefore, brown adipose tissue activation lands itself as a potential target for reducing obesity and its induced insulin resistance, subsequently rescuing PCOS phenotypes. In addition, regenerative medicine has proven efficacy in resolving PCOS-associated infertility and its metabolic symptoms. In particular, many stem/progenitor cells have been verified to possess the differentiation capacity into functional brown adipocytes. Thus, throughout this review, we will discuss the different brown adipose tissue activation strategies and stem-cell-based therapies applied to PCOS models and the possible combination of both therapeutic approaches to synergistically act on the activation of brown adipose tissue and attenuate PCOS-correlated infertility and retract the consequences of the metabolic syndrome on the physiological state of patients.


Asunto(s)
Infertilidad , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Resistencia a la Insulina/fisiología , Medicina Regenerativa , Obesidad/complicaciones , Infertilidad/complicaciones , Infertilidad/patología
11.
Rev Cardiovasc Med ; 24(12): 354, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39077081

RESUMEN

Background: Cardiovascular disease that is caused by atherosclerosis is the leading cause of death worldwide. Atherosclerosis is primarily triggered by endothelial dysfunction and the accumulation of modified low-density lipoprotein (LDL) particles in the subendothelial space of blood vessels. Early reports have associated oxidized LDL with altered fibrinolysis and atherogenesis. It has been suggested that myeloperoxidase oxidized LDL (Mox-LDL) is involved in atherosclerosis because of its significant pathophysiological role in the modification of LDL in vivo. It has been equally demonstrated that Mox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (lox-1) scavenger receptor which leads to the upregulation of inflammatory mediators in endothelial cells and the progression of cardiovascular disease. It has been also shown that neuroserpin, a member of the serine proteinase inhibitor (serpin) superfamily, has an important role at the level of fibrinolysis in the nervous tissue. Methods: Since little is known about the effects of Mox-LDL on endothelial cell fibrinolytic activity and the involvement of lox-1 in this process, our study aimed at evaluating the in vitro effects of Mox-LDL on neuroserpin release from human aortic endothelial cells (HAECs) and the role of lox-1 scavenger receptor in this context by relying on lox-1 gene silencing in HAECs, culturing the cells in the presence of Mox-LDL, measuring their neuroserpin expression and release by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively, and assessing their fibrinolytic activity using the Euglobulin Clot Lysis Time (ECLT) method. Results: Our data show that Mox-LDL decreases endothelial cell fibrinolytic capacity by upregulating neuroserpin in lox-1 knockdown cells. Conclusions: Lox-1 protects the endothelial cells from a Mox-LDL-induced decrease in pro-fibrinolytic capacity, which has important consequences in the context of stroke.

12.
World J Gastroenterol ; 28(40): 5845-5864, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36353202

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) constitutes a substantial risk factor for colorectal cancer. Connexin 43 (Cx43) is a protein that forms gap junction (GJ) complexes involved in intercellular communication, and its expression is altered under pathological conditions, such as IBD and cancer. Recent studies have implicated epigenetic processes modulating DNA methylation in the pathogenesis of diverse inflammatory and malignant diseases. The ten-eleven translocation-2 (TET-2) enzyme catalyzes the demethylation, hence, regulating the activity of various cancer-promoting and tumor-suppressor genes. AIM: To investigate Cx43 and TET-2 expression levels and presence of 5-hydroxymethylcytosine (5-hmC) marks under inflammatory conditions both in vitro and in vivo. METHODS: TET-2 expression was evaluated in parental HT-29 cells and in HT-29 cells expressing low or high levels of Cx43, a putative tumor-suppressor gene whose expression varies in IBD and colorectal cancer, and which has been implicated in the inflammatory process and in tumor onset. The dextran sulfate sodium-induced colitis model was reproduced in BALB/c mice to evaluate the expression of TET-2 and Cx43 under inflammatory conditions in vivo. In addition, archived colon tissue sections from normal, IBD (ulcerative colitis), and sporadic colon adenocarcinoma patients were obtained and evaluated for the expression of TET-2 and Cx43. Expression levels were reported at the transcriptional level by quantitative real-time polymerase chain reaction, and at the translational level by Western blotting and immunofluorescence. RESULTS: Under inflammatory conditions, Cx43 and TET-2 expression levels increased compared to non-inflammatory conditions. TET-2 upregulation was more pronounced in Cx43-deficient cells. Moreover, colon tissue sections from normal, ulcerative colitis, and sporadic colon adenocarcinoma patients corroborated that Cx43 expression increased in IBD and decreased in adenocarcinoma, compared to tissues from non-IBD subjects. However, TET-2 expression and 5-hmC mark levels decreased in samples from patients with ulcerative colitis or cancer. Cx43 and TET-2 expression levels were also investigated in an experimental colitis mouse model. Interestingly, mice exposed to carbenoxolone (CBX), a GJ inhibitor, had upregulated TET-2 levels. Collectively, these results show that TET-2 levels and activity increased under inflammatory conditions, in cells downregulating gap junctional protein Cx43, and in colon tissues from mice exposed to CBX. CONCLUSION: These results suggest that TET-2 expression levels, as well as Cx43 expression levels, are modulated in models of intestinal inflammation. We hypothesize that TET-2 may demethylate genes involved in inflammation and tumorigenesis, such as Cx43, potentially contributing to intestinal inflammation and associated carcinogenesis.


Asunto(s)
Adenocarcinoma , Colitis Ulcerosa , Colitis , Neoplasias del Colon , Dioxigenasas , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Adenocarcinoma/patología , Carcinogénesis/patología , Colitis/inducido químicamente , Colitis Ulcerosa/patología , Colon/patología , Neoplasias del Colon/patología , Conexina 43/genética , Conexina 43/metabolismo , Sulfato de Dextran/toxicidad , Dioxigenasas/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología
13.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235154

RESUMEN

Colorectal cancer (CRC) is ranked the second most lethal type of tumor globally. Thus, developing novel anti-cancer therapeutics that are less aggressive and more potent is needed. Recently, natural bioactive molecules are gaining interest as complementary and supportive antineoplastic treatments due to their safety, effectiveness, and low cost. Jania rubens (J. rubens) is a red coral seaweed abundant in the Mediterranean and bears a significant pharmacological essence. Despite its therapeutic potential, the natural biomolecules extracted from this alga are poorly identified. In this study, the proximal analysis revealed high levels of total ash content (66%), 11.3% proteins, 14.5% carbohydrates, and only 4.5% lipids. The elemental identification showed magnesium and calcium were high among its macro minerals, (24 ± 0.5 mg/g) and (33 ± 0.5 mg/g), respectively. The Chlorophyll of J. rubens was dominated by other pigments with (0.82 ± 0.02 mg/g). A 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay identified effective antioxidant activity in various J. rubens extracts. More importantly, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium reduction and wound healing assays indicate that organic extracts from J. rubens significantly counteract the proliferation of colon cancer cell lines (HCT-116 and HT-29) and inhibit their migratory and metastatic properties in a dose and time-dependent manner. Overall, this study provides insight into the physicochemical properties of red seaweed, J. rubens, and identifies its significant antioxidant, cytotoxic, and anti-migratory potential on two colorectal cell lines, HCT-116 and HT-29.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Aceites Volátiles , Rhodophyta , Algas Marinas , Antineoplásicos/farmacología , Antioxidantes/farmacología , Calcio , Carbohidratos , Clorofila , Neoplasias del Colon/tratamiento farmacológico , Humanos , Magnesio , Extractos Vegetales/química , Rhodophyta/química , Algas Marinas/química
14.
J Clin Med ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36013171

RESUMEN

The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.

15.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408798

RESUMEN

Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.


Asunto(s)
Leucemia Mieloide Aguda , Sumoilación , Animales , Cisteína Endopeptidasas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Quinoxalinas
16.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269979

RESUMEN

Cardiovascular disease as a result of atherosclerosis is a leading cause of death worldwide. Atherosclerosis is primarily caused by the dysfunction of vascular endothelial cells and the subendothelial accumulation of oxidized forms of low-density lipoprotein (LDL). Early observations have linked oxidized LDL effects in atherogenesis to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) scavenger receptor. It was shown that LOX-1 is upregulated by many inflammatory mediators and proatherogenic stimuli including cytokines, reactive oxygen species (ROS), hemodynamic blood flow, high blood sugar levels and, most importantly, modified forms of LDL. Oxidized LDL signaling pathways in atherosclerosis were first explored using LDL that is oxidized by copper (Cuox-LDL). In our study, we used a more physiologically relevant model of LDL oxidation and showed, for the first time, that myeloperoxidase oxidized LDL (Mox-LDL) may affect human aortic endothelial cell (HAEC) function through the LOX-1 scavenger receptor. We report that Mox-LDL increases the expression of its own LOX-1 receptor in HAECs, enhancing inflammation and simultaneously decreasing tubulogenesis in the cells. We hypothesize that Mox-LDL drives endothelial dysfunction (ED) through LOX-1 which provides an initial hint to the pathways that are initiated by Mox-LDL during ED and the progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Endoteliales , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Peroxidasa/metabolismo , Receptores de LDL/metabolismo , Receptores Depuradores de Clase E/metabolismo
17.
Oncol Lett ; 23(1): 6, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820005

RESUMEN

Three-dimensional (3D) organoid culture systems are emerging as potential reliable tools to investigate basic developmental processes of human disease, especially cancer. The present study used established and modified culture conditions to report successful generation and characterization of patient-derived organoids from fresh primary tissue specimens of patients with treatment-naïve prostate cancer (PCa). Fresh tissue specimens were collected, digested enzymatically and the resulting cell suspensions were plated in a 3D environment using Matrigel as an extracellular matrix. Previously established 12-factor medium for organoid culturing was modified to create a minimal 5-factor medium. Organoids and corresponding tissue specimens were characterized using transcriptomic analysis, immunofluorescent analysis, and immunohistochemistry. Furthermore, patient-derived organoids were used to assess the drug response. Treatment-naïve patient-derived PCa organoids were obtained from fresh radical prostatectomy specimens. These PCa organoids mimicked the heterogeneity of corresponding parental tumor tissue. Histopathological analysis demonstrated similar tissue architecture and cellular morphology, as well as consistent immunohistochemical marker expression. Also, the results confirmed the potential of organoids as an in vitro model to assess potential personalized treatment responses as there was a differential drug response between different patient samples. In conclusion, the present study investigated patient-derived organoids from a cohort of treatment-naïve patients. Derived organoids mimicked the histological features and prostate lineage profiles of their corresponding parental tissue and may present a potential model to predict patient-specific treatment response in a pre-clinical setting.

18.
Microorganisms ; 9(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34946133

RESUMEN

Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.

19.
Pathogens ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832507

RESUMEN

Toxoplasma gondii (T. gondii) is a prevalent protozoan parasite of medical and veterinary significance. It is the etiologic agent of toxoplasmosis, a neglected disease in which incidence and symptoms differ between patients and regions. In immunocompetent patients, toxoplasmosis manifests as acute and chronic forms. Acute toxoplasmosis presents as mild or asymptomatic disease that evolves, under the host immune response, into a persistent chronic disease in healthy individuals. Chronic toxoplasmosis establishes as latent tissue cysts in the brain and skeletal muscles. In immunocompromised patients, chronic toxoplasmosis may reactivate, leading to a potentially life-threatening condition. Recently, the association between toxoplasmosis and various diseases has been shown. These span primary neuropathies, behavioral and psychiatric disorders, and different types of cancer. Currently, a direct pre-clinical or clinical molecular connotation between toxoplasmosis and most of its associated diseases remains poorly understood. In this review, we provide a comprehensive overview on Toxoplasma-induced and associated diseases with a focus on available knowledge of the molecular players dictating these associations. We will also abridge the existing therapeutic options of toxoplasmosis and highlight the current gaps to explore the implications of toxoplasmosis on its associated diseases to advance treatment modalities.

20.
PLoS One ; 16(8): e0255876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34375359

RESUMEN

BACKGROUND: Patients with diabetes are more vulnerable to the detrimental respiratory effects of combustible cigarette smoke (CS) when compared to the general population. Electronic cigarettes (ECIG) and heated tobacco products (HTP) are marketed as less harmful alternatives to CS. In this study, we compared the effects of acute ECIG, HTP and CS exposure on the lungs of type II diabetes versus non-diabetic mice in an animal model. METHODS: Type II Diabetic (Diab) and Non-Diabetic (Non-Diab) mice were divided into Control, ECIG, HTP and CS groups. Animals were exposed for 6 hrs./day to either air, ECIG, HTP or CS for seven days. Lung injury was determined by a) histopathology, b) wet to dry ratio, c) albumin concentration in bronchoalveolar lavage fluid, d) expression of TNF-α, IL-6, and IL-1 ß, e) reactive oxygen species production (ROS), and f) assessment of cellular apoptosis. RESULTS: Lung histology revealed increased edema and inflammatory cells in diabetic mice exposed to ECIG, HTP and CS. The expression of Inflammatory mediators was, in general, more significant in the Diabetic groups as well. TNF-α expression, for example, was upregulated in Diab + ECIG but not in Non-Diab + ECIG. ROS was significantly increased in Diab + CS, less in Non-Diab + CS and weakly noted in ECIG + Diab. Significant albumin leak was observed in Diab and Non-Diab HTP-exposed animals. CS exposure worsened lung injury in Diab when compared to Non-Diab mice. CONCLUSION: Comorbid medical conditions like diabetes may amplify ill effects of CS, ECIG or HTP exposure.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Diabetes Mellitus Tipo 2/patología , Lesión Pulmonar/patología , Pulmón/patología , Aerosoles/efectos adversos , Albúminas/análisis , Animales , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Sistemas Electrónicos de Liberación de Nicotina , Femenino , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmón/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Ratones , Ratones Transgénicos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Productos de Tabaco/efectos adversos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...