Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 252, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066588

RESUMEN

Pectinase is a particular type of enzyme that can break down pectin compounds and is extensively utilised in the agricultural field. In this study, twenty yeast isolates were isolated and assayed for pectinase activity. Molecular identification by PCR amplification and sequencing of internal transcribed spacer (ITS) regions of isolate no. 18 had the highest pectinase activity of 46.35 U/mg, was identified as Rhodotorula mucilaginosa PY18, and was submitted under accession no. (OM275426) in NCBI. Rhodotorula mucilaginosa PY18 was further enhanced through sequential mutagenesis, resulting in a mutant designated as Rhodotorula mucilaginosa E54 with a specific activity of 114.2 U/mg. Using Response Surface Methodology (RSM), the best culture conditions for the pectinase-producing yeast mutant Rhodotorula mucilaginosa E54 were pH 5, 72-h incubation, 2.5% xylose, and 2.5% malt extract, with a pectinase-specific activity of 156.55 U/mg. Then, the obtained sequences of the endo-polygalacturonase PGI gene from Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were isolated for the first time, sequenced, and submitted to NCBI accession numbers OQ283005 and OQ283006, respectively. The modelled 3D structure of the endo-PGI enzyme (485 residues) was validated using Ramachandran's plot, which showed 87.71, 85.56, and 91.57% in the most favourable region for template Rhodotorula mucilaginosa KR, strain Rhodotorula mucilaginosa PY18, and mutant Rhodotorula mucilaginosa E54, respectively. In molecular docking studies, the results of template Rhodotorula mucilaginosa KR endo-PG1 showed an interaction with an affinity score of - 6.0, - 5.9, and - 5.6 kcal/mol for active sites 1, 2, and 3, respectively. Rhodotorula mucilaginosa PY18 endo-PG1 showed an interaction affinity with a score of - 5.8, - 6.0, and - 5.0 kcal/mol for active sites 1, 2, and 3, respectively. Mutant Rhodotorula mucilaginosa E54 endo-PG1 showed an interaction affinity of - 5.6, - 5.5, - 5.5 and - 5.4 kcal/mol for active sites 1, 2, and 3, respectively. The endo-PGI genes of both the yeast strain Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were successfully cloned and expressed in E. coli DH5α, showing significantly higher endo-PG1 activity, which recorded 94.57 and 153.10 U/mg for recombinant Rhodotorula mucilaginosa pGEM-PGI-PY18 and recombinant mutant Rhotorula pGEM-PGI-E54, respectively.


Asunto(s)
Poligalacturonasa , Rhodotorula , Poligalacturonasa/genética , Simulación del Acoplamiento Molecular , Escherichia coli/metabolismo , Rhodotorula/genética , Levaduras/metabolismo , Mutagénesis
2.
Sci Rep ; 13(1): 19989, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968282

RESUMEN

This study addresses the environmental risks associated with the accumulation of keratin waste from poultry, which is resistant to conventional protein degradation methods. To tackle this issue, microbial keratinases have emerged as promising tools for transforming resilient keratin materials into valuable products. We focus on the Metalloprotease (MetPr) gene isolated from novel Pichia kudriavzevii YK46, sequenced, and deposited in the NCBI GenBank database with the accession number OQ511281. The MetPr gene encodes a protein consisting of 557 amino acids and demonstrates a keratinase activity of 164.04 U/ml. The 3D structure of the protein was validated using Ramachandran's plot, revealing that 93% and 97.26% of the 557 residues were situated within the most favoured region for the MetPr proteins of template Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Computational analyses were employed to determine the binding affinities between the deduced protein and beta keratin. Molecular docking studies elucidated the optimal binding affinities between the metalloprotease (MetPr) and beta-keratin, yielding values of - 260.75 kcal/mol and - 257.02 kcal/mol for the template strains Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Subsequent molecular cloning and expression of the MetPr gene in E. coli DH5α led to a significantly higher keratinase activity of 281 ± 12.34 U/ml. These findings provide valuable insights into the potential of the MetPr gene and its encoded protein for keratin waste biotransformation, with implications for addressing environmental concerns related to keratinous waste accumulation.


Asunto(s)
Escherichia coli , Plumas , Animales , Plumas/metabolismo , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Pichia/metabolismo , Metaloproteasas/metabolismo , Queratinas/genética , Queratinas/metabolismo , Clonación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA