Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 327(3): E313-E327, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39017682

RESUMEN

Thyroid dysfunction and diabetes mellitus are prevalent endocrine disorders that often coexist and influence each other. The role of spexin (SPX) in diabetes and obesity is well documented, but its connection to thyroid function is less understood. This study investigates the influence of exercise (EX) and SPX on thyroid hypofunction in obese type 2 diabetic rats. Rats were divided into normal control, obese diabetic sedentary, obese diabetic EX, and obese diabetic SPX groups, with subdivisions for M871 and HT-2157 treatment in the latter two groups. High-fat diet together with streptozotocin (STZ) injection induced obesity and diabetes. The EX group underwent swimming, and the SPX group received SPX injections for 8 wk. Results showed significant improvements in thyroid function and metabolic, oxidative, and inflammatory states with EX and SPX treatment. The study also explored the involvement of galanin receptor isoforms (GALR)2/3 in SPX effects on thyroid function. Blocking GALR2/3 receptors partially attenuated the beneficial effects, indicating their interaction. These findings underscore the importance of EX and SPX in modulating thyroid function in obesity and diabetes. Comprehending this interplay could enable the development of new treatment approaches for thyroid disorders associated with obese type 2 diabetes. Additional research is necessary to clarify the exact mechanisms connecting SPX, EX activity, and thyroid function.NEW & NOTEWORTHY This study proves, for the first time, the beneficial effects of SPX on thyroid dysfunction in obese diabetic rats and suggests that SPX mediates the EX effect on thyroid gland and exerts its effect mainly via GALR2.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Obesidad , Hormonas Peptídicas , Condicionamiento Físico Animal , Glándula Tiroides , Animales , Ratas , Obesidad/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Masculino , Hormonas Peptídicas/metabolismo , Glándula Tiroides/metabolismo , Glándula Tiroides/efectos de los fármacos , Ratas Wistar
2.
FASEB J ; 38(14): e23816, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39072779

RESUMEN

Acetaminophen (APAP) is one of the most clinically relevant medications associated with acute liver damage. A prolific deal of research validated the hepatoprotective effect of empagliflozin (EMPA); however, its effect on APAP-induced hepatotoxicity has still not been investigated. In this study, the prospective hepatoprotective impact of EMPA against APAP-induced hepatotoxicity was investigated. Twenty-eight Balb-C mice were assigned to four groups: control, APAP, EMPA10/APAP, and EMPA25/APAP. At the end of the experiment, serum hepatotoxicity biomarkers, MDA level, and GSH content were estimated. Hepatic mitofusin-2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission 1 protein (FIS1) were immunoassayed. PGC-1α, cGAS, and STING mRNA expression were assessed by real-time PCR. Histopathological changes and immunohistochemistry of INF-ß, p-NF-κB, and iNOS were evaluated. APAP treatment caused significant hepatic functional impairment and increased hepatic MDA levels, as well as a concomitant decrease in GSH content. Marked elevation in Drp1 and FIS1 levels, INF-ß, p-NF-κB, and iNOS immunoreactivity, and reduction in MFN2 and OPA1 levels in the APAP-injected group, PGC-1α downregulation, and high expression of cGAS and STING were also documented. EMPA effectively ameliorated APAP-generated structural and functional changes in the liver, restored redox homeostasis and mitochondrial dynamics balance, and enhanced mitochondrial biogenesis, remarkably diminished hepatic expression of cGAS and STING, and elicited a reduction in hepatic inflammation. Moreover, the computational modeling data support the interaction of APAP with antioxidant system-related proteins as well as the interactions of EMPA against Drp1, cGAS, IKKA, and iNOS proteins. Our findings demonstrated for the first time that EMPA has an ameliorative impact against APAP-induced hepatotoxicity in mice via modulation of mitochondrial dynamics, biogenesis, and cGAS/STING-dependent inflammation. Thus, this study concluded that EMPA could be a promising therapeutic modality for acute liver toxicity.


Asunto(s)
Acetaminofén , Compuestos de Bencidrilo , Enfermedad Hepática Inducida por Sustancias y Drogas , Dinaminas , GTP Fosfohidrolasas , Glucósidos , Proteínas de la Membrana , Dinámicas Mitocondriales , Nucleotidiltransferasas , Animales , Masculino , Ratones , Acetaminofén/toxicidad , Acetaminofén/efectos adversos , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Dinaminas/metabolismo , Dinaminas/genética , Glucósidos/farmacología , GTP Fosfohidrolasas/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , FN-kappa B/metabolismo , Nucleotidiltransferasas/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Neurochem Res ; 49(10): 2803-2820, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38987448

RESUMEN

Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.


Asunto(s)
Envejecimiento , Galactosa , Luteolina , Fármacos Neuroprotectores , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Galactosa/toxicidad , Luteolina/farmacología , Luteolina/uso terapéutico , Envejecimiento/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino , Ratas , Estrés Oxidativo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Apoptosis/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/prevención & control , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo/metabolismo
4.
Int Immunopharmacol ; 133: 112110, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652960

RESUMEN

Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.


Asunto(s)
Colitis Ulcerosa , Oxazolona , Transducción de Señal , Vildagliptina , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/patología , Colon/efectos de los fármacos , Citocinas/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Modelos Animales de Enfermedad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Vildagliptina/farmacología , Vildagliptina/uso terapéutico
5.
Antioxidants (Basel) ; 13(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38671940

RESUMEN

Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a life-threatening clinical issue with limited preventive approaches, posing a substantial challenge to cancer survivors. The anthraquinone diacerein (DCN) exhibits significant anti-inflammatory, anti-proliferative, and antioxidant actions. Its beneficial effects on DIC have yet to be clarified. Therefore, this study investigated DCN's cardioprotective potency and its conceivable molecular targets against DIC. Twenty-eight Wister rats were assigned to CON, DOX, DCN-L/DOX, and DCN-H/DOX groups. Serum cardiac damage indices, iron assay, oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis, ferritinophagy, and ferroptosis-related biomarkers were estimated. Nuclear factor E2-related factor 2 (NRF2) DNA-binding activity and phospho-p53 immunoreactivity were assessed. DCN administration effectively ameliorated DOX-induced cardiac cytomorphological abnormalities. Additionally, DCN profoundly combated the DOX-induced labile iron pool expansion alongside its consequent lethal lipid peroxide overproduction, whereas it counteracted ferritinophagy and enhanced iron storage. Indeed, DCN valuably reinforced the cardiomyocytes' resistance to ferroptosis, mainly by restoring the NRF2/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling axis. Furthermore, DCN abrogated the cardiac oxidative damage, inflammatory response, ER stress, and cardiomyocyte apoptosis elicited by DOX. In conclusion, for the first time, our findings validated DCN's cardioprotective potency against DIC based on its antioxidant, anti-inflammatory, anti-ferroptotic, and anti-apoptotic imprint, chiefly mediated by the NRF2/SLC7A11/GPX4 axis. Accordingly, DCN could represent a promising therapeutic avenue for patients under DOX-dependent chemotherapy.

6.
Arch Biochem Biophys ; 749: 109801, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37884117

RESUMEN

Cisplatin dose-dependent nephrotoxicity is a major issue limiting its proper use in cancer treatment. Inflammation, redox imbalance, and dysregulated cell death are the most plausible underlying pathomechanics. Curcumin and the glucagon-like peptide-1 receptor agonist, liraglutide, have been investigated in various experimental models for their antioxidant, anti-inflammatory, and cell death modulatory effects. Hence, this work was designed to investigate curcumin and liraglutide nephroprotective effects and how they behave together against cisplatin-induced acute kidney injury (AKI) in an experimental Wistar rat model. The study comprised 61 rats divided randomly into 6 unequal groups: control I and II, cisplatin-induced nephrotoxicity, curcumin-treated, liraglutide-treated, and co-treated groups. Renal index, serum nephrotoxicity markers (Cr, BUN, NGAL), renal glycogen synthase kinase-3 ß (GSK-3ß), oxidant/antioxidant parameters (MDA, MPO, GSH, NQO1, HO-1), and inflammatory biomolecules (TNF-α, IL-1ß) were assayed. Moreover, renal cleaved-caspase3 and the pyroptotic biomolecules (nod-like receptor family pyrin domain containing 3, gasdermin D N-terminal fragment) were immunoassayed. Furthermore, relative renal expression of both nuclear factor erythroid 2-related factor 2 (Nr-F2) and caspase1 was evaluated by qRT-PCR. Histopathological examination of renal tissue was carried out along with detection of Bcl-2 and Bax immunoreactivity. Cisplatin induced acute renal damage, augmented inflammation, dysregulated redox balance and induced apoptosis and pyroptosis. On the other hand, curcumin and liraglutide corrected the dysregulated mechanisms and normalized results to a great extent. Mutual use of curcumin and liraglutide exerted the greatest effect in the co-treatment group. Nr-F2/HO-1 axis and GSK-3ß play a master role in their nephroprotective effect. In conclusion, curcumin and liraglutide have an ameliorative effect against cisplatin-induced nephrotoxicity and can be used alone or better in combination owing to their augmented effect launching promising avenues for cancer patients under cisplatin treatment, retarding AKI and enabling them to gain the best protocol effectiveness.


Asunto(s)
Lesión Renal Aguda , Curcumina , Animales , Humanos , Ratas , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Cisplatino/toxicidad , Curcumina/farmacología , Curcumina/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Riñón/patología , Liraglutida , Estrés Oxidativo , Piroptosis , Ratas Wistar
7.
Neurochem Res ; 48(2): 537-550, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36242717

RESUMEN

Chronic alcohol consumption is associated with progressive/irreversible neurodegeneration. However, there is not a clear understanding of its discrete pathophysiology or therapeutic intervention. The present study aimed to investigate the protective effect of the natural citrus flavonoid, naringenin (NAG), against alcohol-induced neurodegeneration in the brain cerebral cortex. Thirty-two male albino rats were randomly divided into four equal groups (eight rats each): control group (I); NAG-treated group (II); alcohol-intoxicated group (III) and alcohol + NAG co-treated group (IV). Brain nuclear factor erythroid 2-related factor 2 and receptor-interacting protein kinase 3 expression were assessed by real-time polymerase chain reaction. NAD(P)H quinone oxidoreductase 1 activity and malondialdehyde, reduced glutathione, mixed lineage kinase-like protein, phosphorylated glycogen synthase kinase 3 beta, and ciliary neurotrophic factor levels were all measured biochemically. B-cell lymphoma 2 expression was assessed by immunohistochemistry. A histopathological examination and neurobehavioral tests were performed. The alcohol-treated group showed a significant increase in oxidative stress and necroptosis biomarkers with a significant reduction in neuroprotective proteins. NAG co-administration effectively ameliorated cognitive dysfunction with an apparent neuroprotective effect by targeting various signaling pathways, including nuclear factor erythroid 2-related factor/NAD(P)H quinone oxidoreductase 1, anti-oxidant capacity, attenuated necroptosis, and upregulated neuroprotective ciliary neurotrophic factor. The study findings suggest NAG as a possible management strategy for alcohol-induced neurodegeneration.


Asunto(s)
Factor Neurotrófico Ciliar , Fármacos Neuroprotectores , Animales , Masculino , Antioxidantes/farmacología , Etanol/farmacología , NAD , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Oxidorreductasas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...